## William Lowell Putnam Mathematical Competition Problems B2, 1985-2022 (with 2022-2010 first)

B2 ('22) Let $\times$ represent the cross product in $\mathbb{R}^{3}$. For what pos- B2 ('16) Define a positive integer $n$ to be squarish if either $n$ itive integers $n$ does there exist a set $S \subset \mathbb{R}^{3}$ with exactly $n$ elements such that

$$
S=\{v \times w: v, w \in S\} ?
$$

B2 ('21) Determine the maximum value of the sum

$$
S=\sum_{n=1}^{\infty} \frac{n}{2^{n}}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}
$$

over all sequences $a_{1}, a_{2}, a_{3}, \cdots$ of nonnegative real numbers satisfying

$$
\sum_{k=1}^{\infty} a_{k}=1 .
$$

B2 ('20) Let $k$ and $n$ be integers with $1 \leq k<n$. Alice and Bob play a game with $k$ pegs in a line of $n$ holes. At the beginning of the game, the pegs occupy the $k$ leftmost holes. A legal move consists of moving a single peg to any vacant hole that is further to the right. The players alternate moves, with Alice playing first. The game ends when the pegs are in the $k$ rightmost holes, so whoever is next to play cannot move and therefore loses. For what values of $n$ and $k$ does Alice have a winning strategy?

B2 ('19)
B2 For all $n \geq 1$, let

$$
a_{n}=\sum_{k=1}^{n-1} \frac{\sin \left(\frac{(2 k-1) \pi}{2 n}\right)}{\cos ^{2}\left(\frac{(k-1) \pi}{2 n}\right) \cos ^{2}\left(\frac{k \pi}{2 n}\right)} .
$$

## Determine

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3}} .
$$

B2 ('18) Let $n$ be a positive integer, and let $f_{n}(z)=n+(n-$ 1) $z+(n-2) z^{2}+\cdots+z^{n-1}$. Prove that $f_{n}$ has no roots in the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.

B2 ('17) Suppose that a positive integer $N$ can be expressed as the sum of $k$ consecutive positive integers
$N=a+(a+1)+(a+2)+\cdots+(a+k-1)$
for $k=2017$ but for no other values of $k>1$. Considering all positive integers $N$ with this property, what is the smallest positive integer $a$ that occurs in any of these expressions?
is itself a perfect square or the distance from $n$ to the nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest perfect square to 2016 is $45^{2}=2025$ and $2025-2016=9$ is a perfect square. (Of the positive integers between 1 and 10 , only 6 and 7 are not squarish.)
For a positive integer $N$, let $S(N)$ be the number of squarish integers between 1 and $N$, inclusive. Find positive constants $\alpha$ and $\beta$ such that

$$
\lim _{N \rightarrow \infty} \frac{S(N)}{N^{\alpha}}=\beta
$$

or show that no such constants exist.
B2 ('15) Given a list of the positive integers $1,2,3,4, \ldots$, take the first three numbers $1,2,3$ and their sum 6 and cross all four numbers off the list. Repeat with the three smallest remaining numbers $4,5,7$ and their sum 16 . Continue in this way, crossing off the three smallest remaining numbers and their sum, and consider the sequence of sums produced: $6,16,27,36, \ldots$ Prove or disprove that there is some number in the sequence whose base 10 representation ends with 2015.

B2 ('14) Suppose that $f$ is a function on the interval $[1,3]$ such that $-1 \leq f(x) \leq 1$ for all $x$ and $\int_{1}^{3} f(x) d x=0$. How large can $\int_{1}^{3} \frac{f(x)}{x} d x$ be?

B2 ('13) Let $C=\bigcup_{N=1}^{\infty} C_{N}$, where $C_{N}$ denotes the set of 'cosine polynomials' of the form $f(x)=1+$ $\sum_{n=1}^{N} a_{n} \cos (2 \pi n x)$ for which:
(i) $f(x) \geq 0$ for all real $x$, and
(ii) $a_{n}=0$ whenever $n$ is a multiple of 3 .

Determine the maximum value of $f(0)$ as $f$ ranges through $C$, and prove that this maximum is attained.

B2 ('12) Let $P$ be a given (non-degenerate) polyhedron. Prove that there is a constant $c(P)>0$ with the following property: If a collection of $n$ balls whose volumes sum to $V$ contains the entire surface of $P$, then $n>c(P) / V^{2}$.

B2 ('11) Let $S$ be the set of all ordered triples $(p, q, r)$ of prime numbers for which at least one rational number $x$ satisfies $p x^{2}+q x+r=0$. Which primes appear in seven or more elements of $S$ ?

B2 ('10) Given that $A, B$, and $C$ are noncollinear points in the plane with integer coordinates such that the distances $A B, A C$, and $B C$ are integers, what is the smallest possible value of $A B$ ?

B2 ('85) Define polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1$, B2 ('93) Consider the following game played with a deck of $2 n$ $f_{n}(0)=0$ for $n \geq 1$, and

$$
\frac{d}{d x} f_{n+1}(x)=(n+1) f_{n}(x+1)
$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.
B2 ('86) Prove that there are only a finite number of possibilities for the ordered triple $T=(x-y, y-z, z-x)$, where $x, y, z$ are complex numbers satisfying the simultaneous equations

$$
x(x-1)+2 y z=y(y-1)+2 z x+z(z-1)+2 x y,
$$

and list all such triples $T$.
B2 ('87) Let $r, s$ and $t$ be integers with $0 \leq r, 0 \leq s$ and $r+s \leq$ $t$. Prove that

B2 ('95) An ellipse, whose semi-axes have lengths $a$ and $b$, rolls $\frac{\binom{s}{0}}{\binom{t}{r}}+\frac{\binom{s}{1}}{\binom{t}{r+1}}+\cdots+\frac{\binom{s}{s}}{\binom{t}{r+s}}=\frac{t+1}{(t+1-s)\binom{t-s}{r}}$.

B2 ('94) For which real numbers $c$ is there a straight line that intersects the curve

$$
x^{4}+9 x^{3}+c x^{2}+9 x+4
$$

in four distinct points? without slipping on the curve $y=c \sin \left(\frac{x}{a}\right)$. How are $a, b, c$ related, given that the ellipse completes one revolution when it traverses one period of the curve?

B2 ('88) Prove or disprove: If $x$ and $y$ are real numbers with B2 ('96) Show that for every positive integer $n$,
$y \geq 0$ and $y(y+1) \leq(x+1)^{2}$, then $y(y-1) \leq x^{2}$.
B2 ('89) Let $S$ be a non-empty set with an associative operation that is left and right cancellative ( $x y=x z$ implies $y=$ $z$, and $y x=z x$ implies $y=z$ ). Assume that for every $a$ in $S$ the set $\left\{a^{n}: n=1,2,3, \ldots\right\}$ is finite. Must $S$ be a group?

B2 ('90) Prove that for $|x|<1,|z|>1$,

$$
1+\sum_{j=1}^{\infty}\left(1+x^{j}\right) P_{j}=0
$$

where $P_{j}$ is

$$
\frac{(1-z)(1-z x)\left(1-z x^{2}\right) \cdots\left(1-z x^{j-1}\right)}{(z-x)\left(z-x^{2}\right)\left(z-x^{3}\right) \cdots\left(z-x^{j}\right)} .
$$

B2 ('91) Suppose $f$ and $g$ are non-constant, differentiable, realvalued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers $x$ and $y$,

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y) \\
g(x+y) & =f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all $x$.

B2 ('92) For nonnegative integers $n$ and $k$, define $Q(n, k)$ to be the coefficient of $x^{k}$ in the expansion of $\left(1+x+x^{2}+\right.$ $\left.x^{3}\right)^{n}$. Prove that

$$
Q(n, k)=\sum_{j=0}^{k}\binom{n}{j}\binom{n}{k-2 j}
$$

where $\binom{a}{b}$ is the standard binomial coefficient. (Reminder: For integers $a$ and $b$ with $a \geq 0,\binom{a}{b}=\frac{a!}{b!(a-b)!}$ for $0 \leq b \leq a$, with $\binom{a}{b}=0$ otherwise.)

$$
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<1 \cdot 3 \cdot 5 \cdots(2 n-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}
$$

B2 ('97) Let $f$ be a twice-differentiable real-valued function satisfying

$$
f(x)+f^{\prime \prime}(x)=-x g(x) f^{\prime}(x)
$$

where $g(x) \geq 0$ for all real $x$. Prove that $|f(x)|$ is bounded.

B2 ('98) Given a point $(a, b)$ with $0<b<a$, determine the minimum perimeter of a triangle with one vertex at $(a, b)$, one on the $x$-axis, and one on the line $y=x$. You may assume that a triangle of minimum perimeter exists.

B2 ('99) Let $P(x)$ be a polynomial of degree $n$ such that $P(x)=$ $Q(x) P^{\prime \prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime \prime}(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have $n$ distinct roots.

B2 ('00) Prove that the expression

$$
\frac{g c d(m, n)}{n}\binom{n}{m}
$$

is an integer for all pairs of integers $n \geq m \geq 1$.
B2 ('01) Find all pairs of real numbers $(x, y)$ satisfying the system of equations

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{2 y}=\left(x^{2}+3 y^{2}\right)\left(3 x^{2}+y^{2}\right) \\
& \frac{1}{x}-\frac{1}{2 y}=2\left(y^{4}-x^{4}\right)
\end{aligned}
$$

B2 ('02) Consider a polyhedron with at least five faces such that B2 ('06) Prove that, for every set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of $n$ exactly three edges emerge from each of its vertices. Two players play the following game:

Each player, in turn, signs his or her name on a previously unsigned face. The winner is the player who first succeeds in signing three faces that share a common vertex.

Show that the player who signs first will always win by playing as well as possible.

B2 ('03) Let $n$ be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$, form a new sequence of $n-1$ entries $\frac{3}{4}, \frac{5}{12}, \ldots, \frac{2 n-1}{2 n(n-1)}$ by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries, and continue until the final sequence produced consists of a single number $x_{n}$. Show that $x_{n}<2 / n$.

B2 ('04) Let $m$ and $n$ be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \frac{n!}{n^{n}} .
$$

B2 ('05) Find all positive integers $n, k_{1}, \ldots, k_{n}$ such that $k_{1}+$ $\cdots+k_{n}=5 n-4$ and

$$
\frac{1}{k_{1}}+\cdots+\frac{1}{k_{n}}=1
$$

real numbers, there exists a non-empty subset $S$ of $X$ and an integer $m$ such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1} .
$$

B2 ('07) Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=0$. Prove that for every $\alpha \in$ $(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|
$$

B2 ('08) Let $F_{0}(x)=\ln x$. For $n \geq 0$ and $x>0$, let $F_{n+1}(x)=$ $\int_{0}^{x} F_{n}(t) d t$. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{n!F_{n}(1)}{\ln n}
$$

B2 ('09) A game involves jumping to the right on the real number line. If $a$ and $b$ are real numbers and $b>a$, the cost of jumping from $a$ to $b$ is $b^{3}-a b^{2}$. For what real numbers $c$ can one travel from 0 to 1 in a finite number of jumps with total cost exactly $c$ ?

