
William Lowell Putnam Mathematical Competition
Problems B2, 1985-2023 (newest first from 2010)

B2 (’23) For each positive integer n, let k(n) be the number of
ones in the binary representation of 2023 · n. What is
the minimum value of k(n)?

B2 (’22) Let × represent the cross product in R3. For what pos-
itive integers n does there exist a set S ⊂ R3 with ex-
actly n elements such that

S = {v × w : v, w ∈ S}?

B2 (’21) Determine the maximum value of the sum

S =

∞∑
n=1

n

2n
(a1a2 · · · an)1/n

over all sequences a1, a2, a3, · · · of nonnegative real
numbers satisfying

∞∑
k=1

ak = 1.

B2 (’20) Let k and n be integers with 1 ≤ k < n. Alice and
Bob play a game with k pegs in a line of n holes. At
the beginning of the game, the pegs occupy the k left-
most holes. A legal move consists of moving a single
peg to any vacant hole that is further to the right. The
players alternate moves, with Alice playing first. The
game ends when the pegs are in the k rightmost holes,
so whoever is next to play cannot move and therefore
loses. For what values of n and k does Alice have a
winning strategy?

B2 (’19)

B2 For all n ≥ 1, let

an =

n−1∑
k=1

sin
(

(2k−1)π
2n

)
cos2

(
(k−1)π

2n

)
cos2

(
kπ
2n

) .
Determine

lim
n→∞

an
n3

.

B2 (’18) Let n be a positive integer, and let fn(z) = n + (n −
1)z + (n − 2)z2 + · · · + zn−1. Prove that fn has no
roots in the closed unit disk {z ∈ C : |z| ≤ 1}.

B2 (’17) Suppose that a positive integer N can be expressed as
the sum of k consecutive positive integers

N = a+ (a+ 1) + (a+ 2) + · · ·+ (a+ k − 1)

for k = 2017 but for no other values of k > 1. Con-
sidering all positive integers N with this property, what
is the smallest positive integer a that occurs in any of
these expressions?

B2 (’16) Define a positive integer n to be squarish if either n
is itself a perfect square or the distance from n to the
nearest perfect square is a perfect square. For example,
2016 is squarish, because the nearest perfect square to
2016 is 452 = 2025 and 2025 − 2016 = 9 is a perfect
square. (Of the positive integers between 1 and 10, only
6 and 7 are not squarish.)

For a positive integer N , let S(N) be the number of
squarish integers between 1 and N , inclusive. Find pos-
itive constants α and β such that

lim
N→∞

S(N)

Nα
= β,

or show that no such constants exist.

B2 (’15) Given a list of the positive integers 1, 2, 3, 4, . . . , take
the first three numbers 1, 2, 3 and their sum 6 and cross
all four numbers off the list. Repeat with the three
smallest remaining numbers 4, 5, 7 and their sum 16.
Continue in this way, crossing off the three smallest re-
maining numbers and their sum, and consider the se-
quence of sums produced: 6, 16, 27, 36, . . . . Prove or
disprove that there is some number in the sequence
whose base 10 representation ends with 2015.

B2 (’14) Suppose that f is a function on the interval [1, 3] such
that −1 ≤ f(x) ≤ 1 for all x and

∫ 3

1
f(x) dx = 0. How

large can
∫ 3

1
f(x)
x dx be?

B2 (’13) Let C =
⋃∞

N=1 CN , where CN denotes the set
of ’cosine polynomials’ of the form f(x) = 1 +∑N

n=1 an cos(2πnx) for which:

(i) f(x) ≥ 0 for all real x, and
(ii) an = 0 whenever n is a multiple of 3.

Determine the maximum value of f(0) as f ranges
through C, and prove that this maximum is attained.

B2 (’12) Let P be a given (non-degenerate) polyhedron. Prove
that there is a constant c(P ) > 0 with the follow-
ing property: If a collection of n balls whose vol-
umes sum to V contains the entire surface of P , then
n > c(P )/V 2.

B2 (’11) Let S be the set of all ordered triples (p, q, r) of prime
numbers for which at least one rational number x satis-
fies px2 + qx + r = 0. Which primes appear in seven
or more elements of S?

B2 (’10) Given that A, B, and C are noncollinear points in the
plane with integer coordinates such that the distances
AB, AC, and BC are integers, what is the smallest
possible value of AB?
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B2 (’85) Define polynomials fn(x) for n ≥ 0 by f0(x) = 1,
fn(0) = 0 for n ≥ 1, and

d

dx
fn+1(x) = (n+ 1)fn(x+ 1)

for n ≥ 0. Find, with proof, the explicit factorization of
f100(1) into powers of distinct primes.

B2 (’86) Prove that there are only a finite number of possibilities
for the ordered triple T = (x− y, y − z, z − x), where
x, y, z are complex numbers satisfying the simultane-
ous equations

x(x− 1) + 2yz = y(y − 1) + 2zx+ z(z − 1) + 2xy,

and list all such triples T .

B2 (’87) Let r, s and t be integers with 0 ≤ r, 0 ≤ s and r+ s ≤
t. Prove that(
s
0

)(
t
r

) +

(
s
1

)(
t

r+1

) + · · ·+
(
s
s

)(
t

r+s

) =
t+ 1

(t+ 1− s)
(
t−s
r

) .
B2 (’88) Prove or disprove: If x and y are real numbers with

y ≥ 0 and y(y + 1) ≤ (x+ 1)2, then y(y − 1) ≤ x2.

B2 (’89) Let S be a non-empty set with an associative operation
that is left and right cancellative (xy = xz implies y =
z, and yx = zx implies y = z). Assume that for every
a in S the set {an : n = 1, 2, 3, . . .} is finite. Must S
be a group?

B2 (’90) Prove that for |x| < 1, |z| > 1,

1 +

∞∑
j=1

(1 + xj)Pj = 0,

where Pj is

(1− z)(1− zx)(1− zx2) · · · (1− zxj−1)

(z − x)(z − x2)(z − x3) · · · (z − xj)
.

B2 (’91) Suppose f and g are non-constant, differentiable, real-
valued functions defined on (−∞,∞). Furthermore,
suppose that for each pair of real numbers x and y,

f(x+ y) = f(x)f(y)− g(x)g(y),

g(x+ y) = f(x)g(y) + g(x)f(y).

If f ′(0) = 0, prove that (f(x))2 + (g(x))2 = 1 for all
x.

B2 (’92) For nonnegative integers n and k, define Q(n, k) to be
the coefficient of xk in the expansion of (1 + x+ x2 +
x3)n. Prove that

Q(n, k) =

k∑
j=0

(
n

j

)(
n

k − 2j

)
,

where
(
a
b

)
is the standard binomial coefficient. (Re-

minder: For integers a and b with a ≥ 0,
(
a
b

)
= a!

b!(a−b)!

for 0 ≤ b ≤ a, with
(
a
b

)
= 0 otherwise.)

B2 (’93) Consider the following game played with a deck of 2n
cards numbered from 1 to 2n. The deck is randomly
shuffled and n cards are dealt to each of two players.
Beginning with A, the players take turns discarding one
of their remaining cards and announcing its number.
The game ends as soon as the sum of the numbers on the
discarded cards is divisible by 2n + 1. The last person
to discard wins the game. Assuming optimal strategy
by both A and B, what is the probability that A wins?

B2 (’94) For which real numbers c is there a straight line that
intersects the curve

x4 + 9x3 + cx2 + 9x+ 4

in four distinct points?

B2 (’95) An ellipse, whose semi-axes have lengths a and b, rolls
without slipping on the curve y = c sin

(
x
a

)
. How are

a, b, c related, given that the ellipse completes one rev-
olution when it traverses one period of the curve?

B2 (’96) Show that for every positive integer n,(
2n− 1

e

) 2n−1
2

< 1 · 3 · 5 · · · (2n− 1) <

(
2n+ 1

e

) 2n+1
2

.

B2 (’97) Let f be a twice-differentiable real-valued function sat-
isfying

f(x) + f ′′(x) = −xg(x)f ′(x),

where g(x) ≥ 0 for all real x. Prove that |f(x)| is
bounded.

B2 (’98) Given a point (a, b) with 0 < b < a, determine the min-
imum perimeter of a triangle with one vertex at (a, b),
one on the x-axis, and one on the line y = x. You may
assume that a triangle of minimum perimeter exists.

B2 (’99) Let P (x) be a polynomial of degree n such that P (x) =
Q(x)P ′′(x), where Q(x) is a quadratic polynomial and
P ′′(x) is the second derivative of P (x). Show that if
P (x) has at least two distinct roots then it must have n
distinct roots.

B2 (’00) Prove that the expression

gcd(m,n)

n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1.

B2 (’01) Find all pairs of real numbers (x, y) satisfying the sys-
tem of equations

1

x
+

1

2y
= (x2 + 3y2)(3x2 + y2)

1

x
− 1

2y
= 2(y4 − x4).
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B2 (’02) Consider a polyhedron with at least five faces such that
exactly three edges emerge from each of its vertices.
Two players play the following game:

Each player, in turn, signs his or her
name on a previously unsigned face. The
winner is the player who first succeeds in
signing three faces that share a common
vertex.

Show that the player who signs first will always win by
playing as well as possible.

B2 (’03) Let n be a positive integer. Starting with the sequence
1, 1

2 ,
1
3 , . . . ,

1
n , form a new sequence of n − 1 entries

3
4 ,

5
12 , . . . ,

2n−1
2n(n−1) by taking the averages of two con-

secutive entries in the first sequence. Repeat the aver-
aging of neighbors on the second sequence to obtain a
third sequence of n − 2 entries, and continue until the
final sequence produced consists of a single number xn.
Show that xn < 2/n.

B2 (’04) Let m and n be positive integers. Show that

(m+ n)!

(m+ n)m+n
<

m!

mm

n!

nn
.

B2 (’05) Find all positive integers n, k1, . . . , kn such that k1 +
· · ·+ kn = 5n− 4 and

1

k1
+ · · ·+ 1

kn
= 1.

B2 (’06) Prove that, for every set X = {x1, x2, . . . , xn} of n
real numbers, there exists a non-empty subset S of X
and an integer m such that∣∣∣∣∣m+

∑
s∈S

s

∣∣∣∣∣ ≤ 1

n+ 1
.

B2 (’07) Suppose that f : [0, 1] → R has a continuous derivative
and that

∫ 1

0
f(x) dx = 0. Prove that for every α ∈

(0, 1), ∣∣∣∣∫ α

0

f(x) dx

∣∣∣∣ ≤ 1

8
max
0≤x≤1

|f ′(x)|.

B2 (’08) Let F0(x) = lnx. For n ≥ 0 and x > 0, let Fn+1(x) =∫ x

0
Fn(t) dt. Evaluate

lim
n→∞

n!Fn(1)

lnn
.

B2 (’09) A game involves jumping to the right on the real number
line. If a and b are real numbers and b > a, the cost of
jumping from a to b is b3 − ab2. For what real numbers
c can one travel from 0 to 1 in a finite number of jumps
with total cost exactly c?


