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0 Terminology, highlights & connections

0.1 Highlights

Here are some of the main points of this course.

(Zer) Zeros of an analytic function cannot converge to a point where the function is analytic, unless
the function is constant zero.

If f(z) is analytic and has a zero of order p at z0, then g(z) := f(z)/(z − z0)
p is analytic and

nonzero at z0.

If f(z) has a pole of order p at z0, then g(z) := f(z)(z − z0)
p is analytic and nonzero at z0.

(CR) partial derivatives are continuous around w ∈ C and the Cauchy-Riemann equations hold at
w =⇒ f is complex differentiable at w =⇒ Cauchy-Riemann hold at w

(DefInv) Deformation Invariance Theorem (for contour integrals)

(IntTh) Cauchy’s Integral Theorem

(IntFor) Cauchy’s Integral Formula

(Harmon) The real (and therefore imaginary) parts of an analytic function is harmonic.

Conversely: a harmonic function in a simply-connected domain (e.g., a disk) is the real part
of an analytic function

(ResTh) The residue theorem

(LauSer) An analytic (for now, “complex differentiable”) function can be expanded in a Laurent series
around a “singularity”; if this point is not a true singularity, then the Laurent series is actually
a power series1.

If the Laurent series has no negative powers ( ⇐⇒ the function is bounded near the singu-
larity), then the singularity is removable.

The singularity is a pole if the Laurent series has only finitely many negative powers ( ⇐⇒ the
function converges to ∞ at the singularity).

The singularity is an essential singularity if the Laurent series has infinitely many negative
powers ( ⇐⇒ the function has no limit at the singularity).

1Which is the true meaning of “analytic”; the “complex differentiable” version is more appropriately called “holo-
morphic”, but they coincide in this case.
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(LiouTh) Liouville’s Theorem: a bounded entire function is constant.

(MaxMod) The Maximum Modulus Principle: if |f |, the absolute value of an analytic function f , has a
local maximum then the function is constant. So such a maximum modulus can happen only
on the “boundary” of the domain.2

(ArgPrin) The Argument Principle: counting “zeros − poles” within a simple closed contour

(Index) Computing the winding number of a closed curve about a point

(Rouché) Invariance of the “number of zeros − number of poles” under small perturbations

How these are related:

• DefInv ⇐⇒ IntTh =⇒ IntFor =⇒ LauSer

• LauSer =⇒ Zer

• CR =⇒ Harmon

• IntFor =⇒ LiouTh

• IntFor =⇒ MaxMod

• IntTh =⇒ ResTh

• ResTh =⇒ ArgPri =⇒ Rouché

• etc.

0.2 Terminology

Here are some of the terms, with a brief description

• in general z stands for a complex number, z ∈ C ⊂ Ĉ = C ∪ {∞}; z = x+ iy denotes its real
and imaginary parts (so x, y are real numbers).

• for a complex-valued function we often denote f = u+iv for its real and imaginary components

• D := {z ∈ C : |z| < 1} denotes the open unit disk in C.

• Arg(z) ∈ (−π, π] denotes the principal value of arg(z), for z ̸= 0.

• f(z) is differentiable at z0 means that f has a (complex) derivative at z0 ∈ C

• f(z) is analytic at z0 it is differentiable on a neighborhood of z0

• f : C → C is an entire function if it analytic on all of C

• a singular point (a.k.a. singularity) of f is a point where f is not analytic but is the limit of
points where f is analytic; e.g. 0 is a singularity of f(z) = 1/z; see page 70†

• a singularity is removable if can redefine the function at that singular point to make it analytic;
e.g. 1 for (z2 − 1)/(z − 1), which equals z + 1 except at z = 1.

2Used quotation marks for “boundary” because if the domain is unbounded then there need not be a point where
the modulus has an extreme value.
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• Log(z) stands for the principal value of the complex logarithm log(z) which extends the real
logarithm, denoted Log = LogR : (0,∞) → R (see section 3.3†). Then

log(z) := Log |z|+ i arg(z) Log(z) := Log |z|+ iArg(z)

• D∗ in sections 3.3†and 3.5†denotes C without the real semi-axis (−∞, 0].

• smooth arc: subset Γ in C that has an admissible parametrization, that is z : [a, b] → Γ such
that

– z is continuously differentiable

– its derivative z′ is never zero

– z is one-to-one

• smooth closed curve: same as above but z(a) = z(b) and 1-1 otherwise

• smooth contour: concatenation of smooth curves (need not be closed)

• loop: closed smooth contour

• Res(f ; a), the residue of f(z) at a: the coefficient of (z − a)−1 in the Laurent series of f
centered at a

1 Chapter 1†: Complex Numbers

1.1 The Algebra of Complex Numbers
1.2 Point Representation of Complex Numbers
1.3 Vectors and Polar Forms
1.4 The Complex Exponential
1.5 Powers and Roots
1.6 Planar Sets
1.7 The Riemann Sphere and Stereographic Projection

1.7 Section 1.7†: The Riemann sphere and stereographic projection

If z = a+ ib ∈ C corresponds to (x1, x2, x3) on the Riemann (unit) sphere, then

x1 =
2a

a2 + b2 + 1
, x2 =

2b

a2 + b2 + 1
, x3 =

a2 + b2 − 1

a2 + b2 + 1

and, provided (x1, x2, x3) is not the North pole (0, 0, 1),

a =
x1

1− x3
, b =

x2
1− x3

Without proof: the stereographic projection preserves angles (i.e., is is conformal) and takes
circles on the Riemann sphere to circles or lines in the complex plane (see Figure 1.23†).

2 Chapter 2†: Analytic Functions

2.1 Functions of a Complex Variable
2.2 Limits and Continuity
2.3 Analyticity
2.4 The Cauchy-Riemann Equations
2.5 Harmonic Functions
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2.2 Section 2.2†: Limits and Continuity

Note the definition of convergence to ∞ on page 62†: zn → ∞ ⇐⇒ |zn| → ∞, and similarly
limz→z0 f(z) = ∞ ⇐⇒ limz→z0 |f(z)| = ∞. See problem 23†: convergence to infinity corresponds
via the stereographic projection to convergence to the North pole.

2.3 Section 2.3†: Analyticity

Definition 2.1 (See e.g. top of page 70†)
f is analytic at a point z0 if is differentiable on a neighborhood of z0.
f is entire if it is analytic on the whole complex plane.
A singular point (a.k.a. singularity) is a point where f is not analytic but which is the limit of

points where f is analytic.

E.g., the complex exponential is an entire function.

2.4 Section 2.4†: The Cauchy-Riemann Equations

“Cauchy-Riemann equations” is usually abbreviated CR. For f = u+ iv they are:{
∂u
∂x = ∂v

∂y
∂u
∂y = − ∂v

∂x

Remark 2.1 (How to remember the Cauchy-Riemann equations)

• Require that the derivatives of u + iv in the horizontal and vertical directions (i.e, w.r.t x
and iy) be equal (see top of page 74†).

• Another explanation:

– Multiplication by a complex number z = a+ ib on C is a linear transformation ξ ∈ C 7→
zξ ∈ C. Seeing C = R2, this linear transformation has a 2 × 2 matrix, which is (recall
the linear algebra course)

(2.1)

(
a −b
b a

)
This gives a representation of C as 2× 2 matrices with real entries, consistent with both
addition and multiplication in C (that is, C is isomorphic to this set of 2× 2 matrices)

– CR at z0 for f(x + iy) = u + iv ⇐⇒ its Jacobian matrix at z0 (that is, the matrix of
partial derivatives), (

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
is of the form (2.1).

Theorem 2.2

• If f = u+ iv is (complex) differentiable at z0, then CR holds at z0.

• Conversely, if CR holds at z0 and the partial derivatives are continuous on a neighborhood of
z0, then f is (complex) differentiable at z0.
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2.5 Section 2.5†: Harmonic functions

Harmonic functions are solution to the Laplace equation; they appear in many physical phenomena.

Theorem 2.3

• If f is complex-analytic, then its real part (and therefore its imaginary part as well) are
harmonic.

• Conversely, if u is harmonic on a simply connected domain3 G then there is a function v on
G such that u+ iv is complex-analytic; v is called the harmonic conjugate of u.

3 Chapter 3†: Elementary Functions

3.1 Polynomials and Rational Functions
3.2 The Exponential, Trigonometric and Hyperbolic Functions
3.3 The Logarithmic Function
3.4 Washers, Wedges, and Walls
3.5 Complex Powers and Inverse Trigonometric Functions

3.3 Section 3.3†: The Logarithmic Function

Obtain, from solving w = log(z) ⇐⇒ exp(w) = z, that

log(z) = Log |z|+ i arg(z), for z ̸= 0

where the LHS is the (multivalued) complex logarithm and the RHS uses the “real” logarithm
(defined only for positive real numbers).

Denote
Log(z) = Log |z|+ iArg(z), for z ̸= 0

for the principal value of the logarithm. Recall that Arg(z) ∈ (−π, π] for z ̸= 0.
Note that Log(z) extends the real logarithm from (0,∞) to C\{0} and is analytic on C\(−∞, 0].
To compute the derivative of the complex log we used this theorem (see also footnote on page

121†):

Theorem 3.1 Let f : G ⊂ C → C be an analytic function on the open set G, z0 ∈ G, and denote
w0 = f(z0).

If f ′(z0) ̸= 0 then f is locally invertible at z0 (that is, there is an open disk B centered at z0,
z0 ∈ B ⊂ G, such that f : B → f(B) ⊂ C is invertible), and the inverse is also (complex) analytic.

Therefore, by the chain rule (where, abusing notation, we denote this inverse by f−1),

(f−1)′(w) =
1

f ′(f−1(w))

3.4 Section 3.4†: Washers, Wedges, and Walls

Did not discuss this yet, will return to it when needed.

3That is, a domain that has “no holes”. E.g., C and D are simply connected, but D without the origin or an
annulus are not simply connected.
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3.5 Section 3.5†: Complex Powers and Inverse Trigonometric Functions

Define
zα := exp(α log(z)) = exp[α(Log |z|+ i arg(z))] for z ̸= 0 and α ∈ C.

Note that this is a multivalued function (with finitely many values if α is real and rational – in
which case it gives exactly the roots discussed in Section 1.5†).

4 Chapter 4†: Complex Integration

4.1 Contours
4.2 Contour Integrals
4.3 Independence of Path
4.4 Cauchy’s Integral Theorem
4.5 Cauchy’s Integral Formula and Its Consequences
4.6 Bounds for Analytic Functions

Idea: Given a (piecewise smooth oriented) contour Γ ⊂ C parameterized by γ : [a, b] →
Γ, define 4 the contour integral on Γ of f : Γ → C by 5

∫
Γ
f(z)dz :=

∫ b

a
f(γ(t))γ′(t)dt ∈ C

Facts:

• because f(z), γ′(t) ∈ C, can take their product 6

• the integral does not depend on the piecewise smooth parametrization chosen

• the length of Γ is given by (we assume a ≤ b, to get a non-negative value)

length(Γ) = ℓ(Γ) =

∫ b

a
|γ′(t)|dt

and is also independent of the parametrization.

4.1 4.1†: Contours

Rule: for closed simple curves, orientation is such that the interior is on the left.
That there is an “interior” follows from the Jordan Curve Theorem (see Theorem 1† in the

book).

4.2 4.2†: Contour Integrals

To simplify our approach, we define the contour integral according to the formula derived in
Theorem 4†. Then Corollary 1† has to be proven from our definition (not very difficult).

4This is not what the book does: there the integral is defined as a limit of Riemann sums, and then formula (4.1)
is a Theorem.

5This is similar to a line integral in Calculus III.
6For line integrals in Rn had to use the inner product of two vectors, so the outcome was a real number.
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Definition 4.1 Given Γ ⊂ C a smooth contour and f : Γ → C a function we define

(4.1)

∫
Γ
f(z)dz :=

∫ b

a
f(γ(t))

dγ

dt
(t)dt

for an admissible parametrization of Γ. See Definition 1† of §4.1† for what admissible parametriza-
tion means. [Fact: the integral does not depend on the admissible parametrization chosen, as
Corollary 1† says.]

We computed in class a few examples:

Example 4.2 For n integer, ∫
|z|=1

zndz =

{
2πi n = −1

0 n ̸= −1

by using the parametrization γ(t) = eit, t ∈ [0, 2π].

Example 4.3

I =

∫
|z|=1

1

z(2z − 1)
dz = 0

We computed this by decomposing the rational function in simple fractions,

f(z) :=
1

2

1

z(z − 1/2)
= −1

z
+

1

z − 1/2

and then integrating each term separately. The first integral gives −2πi (can redo Example 4.2),
for the second we get, using the parametrization γ(t) = eit, t ∈ [0, 2π] for the unit circle:

I2 :=

∫
|z|=1

1

z − 1/2
dz =

∫ 2π

0

ieit

eit − 1/2
dt = ” log(eit − 1/2)|2π0 ”

and can use the anti-derivative7 F (t) = log(eit − 1/2), provided we take a continuous branch of
this multivalued function. Doing this shows that if we start with F (0) = logR(1/2) then, going
around the origin along the circle t 7→ eit− 1/2, so counterclockwise, F (2π−) = logR(1/2)+2πi.
Thus I2 = 2πi.

We used here logR to denote the “real-valued” logarithm defined on (0,∞) and F (2π−) means
the value we get by approaching 2π from the left. Note that eit − 1/2 has the same value at t = 0
and t = 2π, namely 1/2, but F (0) ̸= F (2π) if we want F to be continuous!

So I = −2πi+ 2πi = 0.
NOTE: This can be computed more easily with the Residue Theorem of Chapter 6†, according

to which for an analytic function having finitely many singularities inside Γ:∫
Γ
f(z)dz = 2πi

∑
{residues of f at the singularities inside Γ}

For our f , the singularities inside the unit circle are 0 and 1/2, and their residues (as seen from the
simple fraction decomposition) are −1 and 1.

Example 4.4 Integrate z on the contour Γ given by the triangle with vertices 0, 1 and 1 + i.
For each side: write a parametrization, apply the formula (4.1); then add up the results, and

obtain i.
This shows (again) that f(z) = z is not an analytic function; if it were analytic,

then its integral on a contractible closed contour would be zero, by Cauchy’s Integral
Theorem, Theorem 4.9†.

7See e.g. Theorem 6† in §4.3†.
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4.3 4.3† Independence of Path

Theorem 4.5 (Theorem 4.7†) Assume f is continuous on the domain D. TFAE8:

(a) f has an antiderivative on D (w.r.t. complex differentiation);

(b) every loop integral of f in D is zero;

(c) contour integrals of f are independent of path (that is, depend only on the initial and final
points)

Remark 4.6 In Calculus II the same result was discussed for (real) vector fields: “f has an
antiderivative” in (a) is replaced by “the vector field v(x, y) is a gradient”9 and the “complex”
path-integral is replaced by the “real” path-integral 10.

Note that the “real” version of this result holds in any dimension.

4.4 4.4† Cauchy’s Integral Theorem

Theorem 4.7 (Theorem 4.8†: Deformation Invariance Theorem) Assume the contour Γ0

can be deformed (continuously) to Γ1 inside the domain D, and f is analytic on D. Then∫
Γ0

f(z)dz =

∫
Γ1

f(z)dz

Remark 4.8 The (“simple”) proof in the textbook relies on a few extra assumptions. For a proof
without those, see e.g. [Rud87, Theorems 10.13 and 10.14].

In particular, if D is simply connected then all loop integrals of a function analytic on D are
zero (see Theorem 4.9†). Therefore, using Theorem 4.7†:

Theorem 4.9 (Theorem 4.10†) Assume D is simply connected and f is analytic on D. Then

f has an antiderivative

which we know (from Theorem 4.7†) is equivalent to

its contour integrals are independent of path

and
loop integrals vanish.

4.5 4.5† Cauchy’s Integral Formula and Its Consequences

Theorem 4.10 (Theorem 4.14†: Cauchy’s Integral Formula) Assume f is analytic on the
domain D; let Γ ⊂ D be a contour such that its interior is in D (that is, can deform inside D the
contour Γ to a point). Then

f(z0) =
1

2πi

∫
Γ

f(z)

z − z0
dz for each z0 in the interior of Γ

8“The Following Are Equivalent”
9That is, v = (φx, φy) for a real-valued function φ(x, y), called potential.

10Which uses dot-product instead of the complex multiplication
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This is one of the central facts about analytic functions, from which much of the rest follows.
More generally (collecting a few theorems in the book):

Theorem 4.11 (Theorem 4.15†) Assume Γ is a simple (so without self-intersections) closed
contour in C, and g : Γ → C is a continuous function. Define

G(z) :=
1

2πi

∫
Γ

g(ζ)

ζ − z
dζ for z inside Γ.

Then G is analytic inside Γ, and has all (complex) derivatives, which are given by

dkG

dzk
(z) =

k!

2πi

∫
Γ

g(ζ)

(ζ − z)k+1
dζ

That is, “can differentiate under the integral sign”.

Remark 4.12 It does not follow that the limit of G(z) as z approaches z0 ∈ Γ equals g(z0). For
example, take g(z) = 1/z and Γ the unit circle, which gives G(z) = 0 inside the unit disk.

Consequences:

Theorem 4.13 (Theorem 4.16†) An analytic function is infinitely differentiable. That is, all its
derivatives are analytic (meaning that they are complex differentiable).

[Will see later that, even better, an analytic function can be written locally as a power series11.]

Theorem 4.14 Let f be a function analytic on and inside the closed simple contour Γ and z inside
Γ. Then

dkf

dzk
(z) =

k!

2πi

∫
Γ

f(ζ)

(ζ − z)k+1
dζ

Proof: This is a consequence of Theorem 4.15†, and the Cauchy Representation Formula, Theorem
4.14†.

Note that this is a “special case” of the Residue Theorem stated in Chapter 6.

Theorem 4.15 (Theorem 4.18†, Morera) If all loop integrals of a continuous function inside
a domain D are zero, then the function is analytic.

Proof: We saw that the vanishing of the integrals on all loops is equivalent to having an an-
tiderivative, so it is the derivative of an analytic function. By the above, all derivatives of an
analytic function are analytic.

4.6 4.6† Bounds for Analytic Functions

Two main results here: Liouville’s theorem and the Maximum Modulus Principle (the latter has
versions in other areas of mathematics as well).

Theorem 4.16 (Liouville) A bounded entire function is constant.

11Actually, this is what “analytic” really means, for both real and complex functions. Complex differentiable on an
open set in C is better called “holomorphic”. These two notions are equivalent, that is why the book uses “analytic”
only.
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An application is the Fundamental Theorem of Algebra: any polynomial of degree n ≥ 1 with
complex coefficients has at least one (and hence n, if we count multiplicities) complex roots. Idea
of proof: assume by contradiction that P (z) = anz

n + an−1z
n−1 + · · ·+ a0 with n ≥ 1, an ̸= 0, has

no roots in C; let f(z) := 1/P (z). Then f is entire (easy) and bounded (not too complicated); by
Liouville’s theorem, P is constant, contradiction.

Other applications are in the exercises.
The other main result is the Maximum Modulus Principle. There are a few theorems in the

book stating various versions, here is one way to think about it:

Theorem 4.17 (Maximum Modulus Principle) Assume f is analytic on the domain D.

(a) If |f | has a local maximum inside D, then f is constant on D.

(b) If f extends continuously to D 12 for D a bounded domain and |f | has a maximum on D then

max
z∈D

|f(z)| = max
z∈∂D

|f(z)|

where ∂D is the boundary of D. That is, the maximum has to occur on the boundary (which
is satisfied for constant functions).

5 Chapter 5†: Series Representations for Analytic Functions

5.1 Sequences and Series
5.2 Taylor Series
5.3 Power Series
5.4∗ Mathematical Theory of Convergence
5.5 Laurent Series
5.6 Zeros and Singularities
5.7 The Point at Infinity

Idea: Functions that are complex differentiable on an open set are more precisely called
holomorphic; functions that can be represented by a power series (which must be their
Taylor series, see more below) are called analytic.

Analytic functions are “as good as it gets”, can work with power series as with polyno-
mials.

MAIN POINT: holomorphic functions (so those that have a complex derivative on
an open set) are analytic (can be written as a power series around each point).

5.1 Review from Calculus II; more details in the book

•
∑

k |ak| < ∞ =⇒
∑

k ak converges (absolute convergence implies convergence; same proof
as in the real case)

• the root test, relation to the ratio test

12D denotes the closure of D
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• radius of convergence for a power series:

Consider the (formal) power series
∑∞

n=0 anz
n. Define its radius of convergence by

R :=
1

lim supn→∞
n
√

|an|

Assume R > 0. Then:

(a) the series converges for |z| < R; denote by f(z) its limit

(b) the series diverges for |z| > R

(c) if 0 < r < R then the series converges uniformly on |z| ≤ r

(d) the function f(z) is infinitely differentiable on |z| < R

(e) the coefficients are given by the derivatives of f :

an =
f (n)(0)

n!

• In particular, if an are all nonzero for large n and |an+1/an| → L as n → ∞ then
limn→∞

n
√

|an| = L (think about the geometric series, an = an), so R = 1/L.

• operations with power series: f + g, f · g, f/g, ef ;
radius of convergence “as expected”;

examples: ez sin(z), tan(z) = sin(z)/ cos(z), esin z, log(1+ z) (convergent for |z| < 1 only, b/c
log(0) not defined)

• can differentiate and integrate a power series term-wise, radius of convergence does not change

• in particular, a power series is holomorphic in the interior of its domain of convergence (always
an open disk)

Examples 5.1 Power series computations.

(a) ez = 1+
z

1!
+

z2

2!
+ · · · =

∞∑
n=0

zn

n!
, obtained by computing the derivatives of ez at z = 0 (recall

that 0! = 1).

Radius of convergence: an = 1
n! , so

an+1

an
→ 0 and therefore n

√
an → 0, which gives R = 1/0 =

∞. Indeed, this is an entire function.

(b)
1

1− z
=

∞∑
n=0

zn for |z| < 1 because 1 + z + z2 + · · · + zn =
1− zn+1

1− z
(multiply by (1 − z) to

check). Note that the series does not converge for any |z| ≥ 1.

(c) Log(1 + z) = z − 1

2
z2 +

1

3
z3 + · · · =

∞∑
n=1

(−1)n+1

n
zn for |z| < 1.

Radius of convergence: |an| = 1
n so |an+1/an| → 1, therefore n

√
|an| → 1 as well, and then

R = 1.

Note that Log z is not defined for z = 0, so the radius of convergence cannot be more than 1.
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To compute: either compute the derivatives of Log(1+z) at z = 0 or notice that Log(1+z)′ =
1

1+z =
∑∞

n=0(−z)n for |z| < 1 from above, and integrate this power series to get

C +
∞∑
n=0

(−1)n
1

n+ 1
zn+1

To find C, compute Log(1 + z) at z = 0.

BTW, the above series converges for z = 1 (being the alternate harmonic series, and indeed
Log 2 exists) but diverges at z = −1 (being the harmonic series), consistent with the fact that
Log(0) does not exist.

(d)
ez

1− z

To obtain the first few terms of the series around z = 0: instead of computing the derivatives
at zero, can multiply (as for polynomials) the series of ez and the series of 1

1−z

(e) the series around zero of
z2 + z + 1

1− z
can be obtained by expanding (z2 + z + 1)(

∑∞
n=0 z

n),

instead of computing derivatives. The radius of convergence cannot be more than 1 (because
there is a singularity at z = 1), and for |z| < 1 we use the correct expansion of 1/(1− z). The
result will also have radius of convergence equal to 1.

(f) and so on

5.2 Main Results from 5.2†-5.5†

Theorem 5.2 (Theorem 5.3†, in §5.2†) If f is analytic (meaning “holomorphic”) on the open
disk DR := {|z − z0| < R} then on DR the function f is equal to its Taylor series centered at z0
(which means that f is “analytic” on DR, see above discussion):

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)

k for |z − z0| < R

In particular, the radius of convergence of this series is at least R.
Recall that, as a consequence of the Cauchy Integral Formula,

f (k)(z0)

k!
=

1

2πi

∫
C

f(ζ)

(ζ − z0)k+1
dζ k ≥ 0

where C is any simple positively oriented curve encircling z0 inside DR.

Theorem 5.3 (Theorem 5.14†, in §5.5†) If f is analytic (meaning “holomorphic”) on the open
annulus A = {r < |z − z0| < R} then on A the function f can be written as a Laurent series
centered at z0:

f(z) =

∞∑
k=0

ak(z − z0)
k +

∞∑
k=1

a−k

(z − z0)k
=

∞∑
k=−∞

ak(z − z0)
k for r < |z − z0| < R

In particular, the “power series” converges for |z − z0| < R, the “inverse-power series” converges
for |z − z0| > r.

13



The coefficients are given by

ak =
1

2πi

∫
C

f(ζ)

(ζ − z0)k+1
dζ k ∈ Z

where C is any simple positively oriented curve inside the annulus encircling z0.

Examples

• the power series of

– ez, defined as ex+iy = ex(cos y + i sin y)

– cos z, defined as (eiz + e−iz)/2

– sin z, defined as (eiz − e−iz)/(2i)

– log(1 + z) for |z| < 1 (recall that different branches of log differ by a multiple of 2πi)

are as for their real versions.

• the function f(z) :=
z2

(z − 1)3(z − 2)2
or g(z) :=

esin z

(z − 1)3(z − 2)2

– can be written as a power series on disks that do not contain the points 1 and 2 (and
the radius of converge is limited to not including these singularities)

– can be expanded only in a Laurent series on annuli that surround these singularities
(need not be centered at a singularity), for example {0 < |z−2| < 1} or {1 < |z−3| < 2}
(with the inner and outer radii also restricted by not including the singularities).

Actually, the Laurent series for f and g have only finitely many negative powers because both
have poles of finite order at their singularities (more about this later).

The above theorems follow from the Cauchy Integral Formula, using the geometric series:

Theorem 5.4 (The geometric series) The function f(z) = 1/(1 − z) has the power series ex-
pansion

1

1− z
=

∞∑
k=0

zk for |z| < 1

and the convergence is uniform on each disk |z| < r < 1, meaning that for each ε > 0 there is an
N = Nε,r such that ∣∣∣∣∣ 1

1− z
−

(
n∑

k=0

zk

)∣∣∣∣∣ ≤ ε for n ≥ N , |z| < r

Proof: Use the identity 1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
for z ̸= 1.

Note also that uniform limit of analytic functions is also analytic:

Theorem 5.5 (Theorem 5.9†, §5.3†) Let D ⊂ C be an open set and fn : D → C analytic
functions.

If fn converges uniformly13 on D to f , then f is also analytic.

13Can relax uniform convergence on the whole D to uniform convergence on each closed bounded subset in D,
called uniform convergence on compacts and more suitable for complex analysis.
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Proof: Using Morera’s Theorem 4.18†: it suffices to prove that the integral of f on any closed
contour Γ ⊂ D is zero; but the integral of fn on Γ vanishes because fn is analytic, and – due to
the uniform convergence of fn to f (see Theorem 5.8†) –

∫
Γ f(z) dz = limn→∞

∫
Γ fn(z) dz.

Remark 5.6 The above theorem is VERY FALSE for real-valued analytic functions: any con-
tinuous function on [a, b] ⊂ R is the uniform limit on [a, b] of polynomials, so of real-analytic
functions (this is the Weierstrass approximation theorem).

Examples

If possible, use the expansion of 1/(1−u) =
∑∞

k=0 u
k for |u| < 1. For a rational function, decompose

in partial fractions.

Example 5.7 Compute the power/Laurent series centered at zero for f(z) = 1
z−1 . Do it for the

disk {|z| < 1} and for the annulus {|z| > 1}.
The computations can be done using the geometric series, no need to compute inte-

grals/derivatives.
Note that the Laurent series centered at a ∈ C in a domain that contains ∞ should contain only

negative powers, starting with a term of order 1/(z − a). This is because as z → ∞, f(z) ≈ 1/z.

Example 5.8 Compute the power/Laurent series for f(z) = 1
(z−1)(z−3) . The computations can be

done using the geometric series. Do it for disks/annuli centered at 0, with radii 1, and 3; there are
3 regions to consider.

Note that the Laurent series in a domain that contains ∞ should contain only negative powers,
starting with terms of order 1/(z − a)2. This is because as z → ∞, f(z) ≈ 1/z2, so the “leading”
term should be 1/z2 if the series is centered at zero.

Example 5.9 Compute the power/Laurent series for f(z) = 1
(z−1)(z−2) (continuing example 2 in

the book). Do it for disks/annuli centered at 1, 3/2, 3.
Note that the Laurent series in a domain that contains ∞ should contain only negative powers,

starting with a term of order 1/(z − a)2. This is because as z → ∞, f(z) ≈ 1/z2.
More about this later: the points 1 and 2 are poles for f , both of order one; ∞ is a zero of

second order.

Example 5.10 Compute the Laurent series at zero for f(z) = exp(1/z) (example 4 in the book).
Can use the power series of the exponential.

More about this later: the origin is an essential singularity for f(z).
Fact: as z → 0, exp(1/z) takes on any value in the complex plane except 0 (because the expo-

nential is never zero). This is the behavior near and essential singularity, see Picard’s Theorem
(Theorem 17† in §5.6†).

Example 5.11 Compute the Laurent series for f(z) = 1
(z−1)2(z−2)

on the annulus {|z−3/2| > 1/2}
centered at 3/2.

The result (after a lengthier computation) is

f(z) =
∑
n≥2

[
1 + (−n+ 2)(−1)n−2

] 1

2n−2
· 1

(z − 3/2)n
=

1

(z − 3/2)2
+ . . .

which starts the right way because f(z) ≈ 1
z2

near ∞.
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Method: first decompose

f(z) =
−2

z − 1
+

−1

(z − 1)2
+

2

z − 2

and then expand each simple fraction.
Note that, despite the partial fraction decomposition, the leading term is not −1/(z − 3/2)2

because the other two terms together have a contribution of the same order.

5.6 5.6† Zeros and Singularities

Recall that a singular point (a.k.a. singularity) of f is a point where f is not analytic but which is
the limit of points where f is analytic; e.g. 0 is a singularity of f(z) = 1/z; see page 70†.

Definition 5.12 (Zeros) Assume f is analytic at z0.
Then f(z) has a zero of order m at z0 if

f(z0) = f ′(z0) = · · · = f (m−1)(z0) = 0 and f (m)(z0) ̸= 0

[See later: then f(z) = (z − z0)
mg(z), g analytic at z0, with g(z0) ̸= 0.]

Definition 5.13 (Poles) Assume f is analytic and has an isolated singularity14 at z0. Consider
the Laurent expansion of f(z) centered at z0,

f(z) =

∞∑
−∞

ak(z − z0)
k

(a) If ak = 0 for all k < 0 then the singularity is removable ; can define f(z0) = a0 to get an
analytic function at z0.

(b) If ak = 0 for all k < −m, and a−m ̸= 0 for some 0 < m ̸= ∞, then the singularity is a pole
of order m. [See later: then f(z) = g(z)/(z − z0)

m, g analytic at z0, g(z0) ̸= 0.]

(c) Otherwise, z0 is an essential singularity . [See Picard’s theorem.]

Some results from this section:

Theorem 5.14 Assume f is analytic in the domain D. If f has a zero of order p at a ∈ D then
f(z) = (z − a)pg(z) with g analytic on D and g(a) ̸= 0.

Proof: Let g(z) := f(z)/(z − a)p on D \ {a}, which is analytic on D \ {a}. Use the Taylor series
of f at a to conclude that g is analytic at a as well.

Theorem 5.15 Assume f has an isolated singularity at z0. TFAE:

(a) z0 is a removable singularity.

(b) f(z) is bounded around z0.

(c) f(z) has a finite limit as z → z0.

14That is, the function is analytic on a punctured disk around the singularity.
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Theorem 5.16 Assume f is analytic in the domain D \ {a}, where a ∈ D. If f is has a pole of

order p at a then f(z) = g(z)
(z−a)p with g analytic on D and g(a) ̸= 0. [Use the Laurent series of f at

a.]

Theorem 5.17 (Consequence of Theorem 5.14) If f is not constant zero on a domain D,
then each zero of f in D is isolated.

Proof: Let a ∈ D be a zero of f . Look at the derivatives f (k)(a), k ≥ 1.

• If all derivatives are zero, then the power series of f is identically zero, so f is constant zero
on the disk in D where this series converges.

This implies that f is constant zero on D. 15

• otherwise, there is a k ≥ 1 such that f (k)(a) ̸= 0, so a is a zero of finite order. Write f as in
Theorem 5.14; since g(a) ̸= 0, there is no other zero close to a .

Corollary 5.18 If f, g : D → C are analytic and coincide on a set that has a limit point in the
domain D, then f = g on D. [Apply the previous theorem to f − g.]

Special case: if f : D → C is analytic on the domain D and its zeros have an accumulation
point in D, then f is identically zero.

Theorem 5.19 (Picard, Theorem 5.17†) If w is an essential singularity of f then on any
neighborhood of w the values of f cover the whole complex plane, except maybe one value.

Proof: The proof is above the pay grade for this course.
As an example, look at f(z) = exp(1/z) and its behavior near z = 0.

Corollary 5.20 Assume a is a singularity of f . TFAE:

(a) limz→a f(z) = ∞;

(b) a is a pole of f .

Theorem 5.21 (Casorati-Weierstrass) Near an essential singularity, the range of the function
is dense in C.

Proof: See exercise 5.6.14†. Assume w is not a limit point of the images through f of a punctured
neighborhood of an essential singularity z. Then g(z) := 1/(f(z) − w) is bounded near z, so the
singularity is removable. But then f(z) = w + 1/g(z) does not have an essential singularity.

Actually:

Theorem 5.22 (Little Picard Theorem) If a function f : C → C is entire and non-constant,
then the set of values that f(z) assumes is either the whole complex plane or the plane minus a
single point.

That is, if f misses two values then it is constant.

15This statement requires more details; can use an argument similar to the proof that if the absolute value of
an analytic function h has a maximum inside a domain, then h is constant — prove a local result (Corollary 3† to
Theorem 16† in §5.6†) and then use path connectedness.
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Theorem 5.23 (Great Picard Theorem) If an analytic function f has an essential singularity
at a point w, then on any punctured neighborhood of w , f(z) takes on all possible complex values,
with at most a single exception, infinitely often. [This follows from Theorem 5.19, Theorem 5.17†.]

6 Chapter 6†: Residue Theory

6.1 The Residue Theorem

6.2 Trigonometric Integrals over [0, 2π]:
∫ 2π
0 U(sin, cos) etc.

6.3 Improper Integrals of Certain Functions over R:
∫∞
−∞ P (x)/Q(x)dx

6.4 Improper Integrals Involving Trigonometric Functions:
∫∞
−∞ sin(kx)P (x)

Q(x)dx

6.5 Indented Contours, e.g. p.v.
∫∞
−∞

eix

x dx

6.6 Integrals Involving Multiple-Value Functions, e.g.
∫∞
0

dx√
x(x+4)

6.7 The Argument Principle and Rouché’s Theorem

6.1 6.1† Cauchy’s Residue Theorem

Theorem 6.1 (Theorem 6.2†, Cauchy’s Residue Theorem) Assume f is analytic on the
simple closed contour Γ, and inside Γ the function f is analytic except for finitely many singu-
lar points, z1, z2, . . . , zn. Then ∫

Γ
f(z)dz = 2πi

n∑
k=1

Res(f ; zk)

Theorem 6.2 (Theorem 6.1†, computing residues) If f has a pole of order m at a, then

Res(f ; a) = lim
z→a

1

(m− 1)!

dm−1

dzm−1
[(z − a)mf(z)]

Remark 6.3 (l’Hôpital to the rescue.) If f has a pole of order 1 then

Res(f ; a) = lim
z→a

(z − a)f(z) = lim
z→a

(z − a)

1/f(z)

It might be easier to compute the limit (or some re-organized version of it) which is 0/0, by l’Hôpital.

6.2 6.2† Trigonometric Integrals over [0, 2π]:
∫ 2π

0
U(sin, cos) etc.

Idea:

• If integral is over [0, 2π]: write sin and cos using exponentials and convert into an
integral around the unit circle. Then apply the Residue Theorem.

• In some other cases, could relate the desired integral to one over [0, 2π].

∫ 2π

0
U(cos θ, sin θ)dθ =

∫ 2π

0
U

(
eiθ + e−iθ

2
,
eiθ − e−iθ

2i

)
dθ

=

∫
{|z|=1}

U

(
z + 1/z

2
,
z − 1/z

2i

)
1

iz
dz
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6.3 6.3† Improper Integrals of Certain Functions over R:
∫∞
−∞ P (x)/Q(x)dx

Remark 6.4 (WARNING) We are computing limρ→∞
∫ ρ
−ρ f(x)dx, which is the principal

value, abbreviated “p.v.” of the integral. The above limit can exists even if

∫ 0

−∞
f(x)dx and∫ ∞

0
f(x)dx do not exist; consider f(x) = x.

If the integral converges, then the “p.v.” is the same as the “regular” integral.

Idea: Complete the segment [−ρ, ρ] ⊂ R on the real axis to a closed contour, so that
the contribution of the added curve goes to zero or can be understood; then apply the
Residue Theorem.

Lemma 6.5 (Lemma 6.1†) Let f(x) = P (x)/Q(x) be a rational function with degreeQ ≥
degreeP + 2, and C+

ρ is the semicircle of radius ρ in the upper half-plane with center the ori-
gin, then

lim
ρ→∞

∫
C+

ρ

f(z)dz = 0.

Actually, only need that |P (z)/Q(z)| ≤ C/|z|2 for large |z|.

Remark 6.6 If |f(x)| ≤ C/|x|2 for large |z| (and f is continuous on R) then
∫∞
−∞ f(x)dx converges,

so it is equal to the principal value.

Example 6.7

∫ ∞

−∞

1

x4 + 1
dx =

π

2

√
2

COMPUTATION:
The rational function f(z) = 1/(z4 + 1) satisfies the assumptions of Lemma 6.1†, so can make

a closed contour by adding to [−ρ, ρ] ⊂ R the semicircle C+
ρ . Call this closed contour Γρ. So, by

the Residue Theorem, ∫
Γρ

f(z)dz = 2πi
∑

a pole inside Γρ

Res(f ; a).

As ρ → ∞, we will have to include exactly the poles in the upper half-plane.
The poles are given by z4 +1 = 0, so roots of order 4 of −1, which are zk = exp(i(π+2πk)/4),

k = 0, 1, 2, 3. Only z0 and z1 are in the upper half-plane.
Compute the residues: since the roots are simple, all the poles are of order one; Res(f, zk) =

limz→zk f(z)(z − zk), which one can compute with l’Hôpital because it is 0/0. This gives

Res(f, zk) =
1

4z3k
=

1

4
exp(−3i(π + 2πk)/4) =

1

4
(cos(−3(π + 2πk)/4) + i sin(−3(π + 2πk)/4))

Therefore, invoking Lemma 6.1† (and a bit of trigonometry):∫ ∞

−∞
f(x)dx = lim

ρ→∞

∫
Γρ

f(z)dz = 2πi (Res(f ; z0) + Res(f ; z1)) = 2πi
1

4
2i sin(−3π/4) =

π

2

√
2

CHECKING (as much as possible): First of all, the result is a positive real number, which is good.

Second, f(x) is less than 1/x4; can bound f on [0,1] by 1 and on [1,∞) by 1/x4. Therefore,
using that f is even: ∫ ∞

−∞
f(x)dx < 2

(
1 +

∫ ∞

1

1

x4
dx

)
= 8/3 ≈ 2.66

The value we got for the integral is π
2

√
2 ≈ 3

2 · 1.4 = 2.1.
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6.4 6.4† Improper Integrals Involving Trigonometric Functions:
∫∞
−∞ sin(kx)P (x)

Q(x)
dx

Idea: Write sin and cos using exponentials; make a closed contour by using:

• a semicircle in the upper half-plane for eimz if m > 0 and

• a semicircle in the lower half-plane for eimz if m < 0.

Lemma 6.8 (Lemma 6.3†, by Jordan) Let f(z) = eimzP (z)/Q(z) with P,Q polynomials hav-
ing degreeQ ≥ degreeP + 1. Denote C+

ρ the semicircle of radius ρ centered at the origin in the
upper half-plane and C−

ρ the semicircle of radius ρ centered at the origin in the lower half-plane.
Then:

m > 0 =⇒ lim
ρ→∞

∫
C+

ρ

f(z)dz = 0.

m < 0 =⇒ lim
ρ→∞

∫
C−

ρ

f(z)dz = 0.

Actually, only need that |P (z)/Q(z)| ≤ C/|z| for large |z|.

Remark 6.9 If f(z) = eimzP (z)/Q(z) as above then the integral
∫∞
−∞ f(z)dz actually converges

(by the Alternating Series Test).

Example 6.10 (Example 6.4.2†)
∫∞
−∞

x sin(x)
x2+1

dx = π
e

COMPUTATION:
NOTE: this integral is not absolutely convergent, but it is convergent (using the Alternating

Series Test). So no need to restrict to the principal value.
Write sinx = (exp(ix) − exp(−ix))/(2i), which gives two integrals involving exp(±iz) and

f(z) = z/(z2 + 1).

• For the integral of exp(iz)f(z) complete [−ρ, ρ] to a closed contour by adding C+
ρ , so will

have to take into account the poles in the upper half-plane. The closed contour is oriented
correctly (its interior is on the left).

So need the pole of exp(iz)z/(z2 + 1) at i (there are a few constants floating around, should
include those too).

After taking ρ → ∞, using Lemma 6.3† (Lemma 6.8) for the m > 0 case and the Residue
Theorem, the first integral is π

2e .

• For the integral of f(z) exp(−iz) complete [−ρ, ρ] to a closed contour by adding C−
ρ , so will

have to take into account the poles in the lower half-plane. Note that the closed contour has
the opposite orientation (its interior is on the right). So have to change the sign of the sum
of residues.

Need the pole of exp(−iz)z/(z2 + 1) at −i (should include those pesky constants too).

After taking ρ → ∞, using Lemma 6.3† (Lemma 6.8) for the m < 0 case and the Residue
Theorem (recall that have to change the sign), the second integral is π

2e as well.

Therefore, the answer is 2 π
2e .

CHECKING: we get a real value, which is good. Do not see an easy way to decide whether the
value is reasonable, but recall that the Alternating Series Test has an error estimate if truncating
the series.
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Shortcut: it happens that x sin(x)/(x2 + 1) = Im[x exp(ix)/(x2 + 1)], so could compute only∫∞
−∞ of this function (for that only need to consider the pole at i), and then take the imaginary
part.

NO SUCH SHORTCUT if had to compute
∫∞
−∞ x sinx/(x2 + i)dx.

6.5 6.5† Indented Contours, e.g. p.v.
∫∞
−∞

eix

x
dx

Idea: If the singularity is on the contour (e.g., in R) then we indeed might have to
compute a principal value (that is, the integral might not converge). For that, will go
around the singularity on a small semicircle.

Lemma 6.11 (Lemma 6.4†) Assume f(z) has a simple pole at c ∈ C.
Denote by Tr the arc of circle of radius r centered at c between the angles θ1 < θ2, so parametrized

(counter-clockwise) by t ∈ [θ1, θ2] 7→ c+ r exp(it). Then

lim
r→0+

∫
Tr

f(z)dz = i(θ2 − θ1)Res(f ; c)

In particular, if c ∈ R and Sr is the semicircle in the upper half-plane covered from left-to-right
(so clockwise), then

lim
r→0+

∫
Sr

f(z)dz = −iπRes(f ; a)

Example 6.12 (Example 6.5.1†)

p.v.

∫ ∞

−∞

exp(ix)

x
= iπ

COMPUTATION:
Note that the integral converges at ±∞, but NOT at 0; so indeed should compute the principal

value.
By Lemma 6.3† (Lemma 6.8) can add the integral on C+

ρ , whose limit is zero. In order to avoid
the singularity of zero, will go around it on a small semicircle Sr of radius r in the upper half-plane
centered at the singularity.

We consider the closed contour given by the segments [−ρ,−r] ∪ [r, ρ] ⊂ R, the semicircle Sr

from the above Lemma and the C+
ρ from before; f(z) has no poles inside this contour, so the

integral around the contour is zero. Using Lemma 6.3† (Lemma 6.8) and Lemma 6.4†, we obtain
that the p.v. is πiRes(f ; 0).

6.6 6.6† Integrals Involving Multiple-Value Functions, e.g.
∫∞
0

dx√
x(x+4)

We discussed in class a few examples from the book. This section is not on the exams.

6.7 6.7† The Argument Principle and Rouché’s Theorem

Idea: One can associate a “winding number” (can call it “index” too) of a closed curve
around a point. This can be computed with a contour integral. Since this quantity
takes integer values, “small” changes will not affect it.
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Such remarkable properties (connecting seemingly unrelated quantities, maybe deriving
certain rigid behaviour) appear in many places. One of the more famous ones is the
Atiyah-Singer Index Theorem, see e.g. Wikipedia 16

Definition 6.13 A function is meromorphic on a domain if at each point the function is either
analytic or has a pole (so no essential singularities).

Remark 6.14 As a consequence of the Weierstrass Product Theorem [Wei], any entire meromor-
phic function is a quotient of two analytic entire functions. [Something similar should hold for
meromorphic functions on any domain.]

Very similar to rational functions, which are quotients of polynomials.

Theorem 6.15 (Theorem 6.3†) Given a simple closed curve C and a function f that has no
zeros on C, is analytic on C, and meromorphic inside C, then

(6.1)
1

2πi

∫
C

f ′(z)

f(z)
dz = N0(f)−Np(f)

where

• N0(f) is the number of zeros of f in D, counting multiplicities;

• Np(f) is the number of poles of f in D, counting multiplicities.

Actually:

Definition 6.16 (Winding number, a.k.a. index) Given a close contour γ : [a, b] → C and a
point z0 ∈ C that is not on the contour, the winding number, a.k.a. index of γ about z0 is
given by

(6.2) Indγ(z0) :=
1

2πi

∫
γ

dz

z − z0
=

1

2πi

∫ b

a

γ′(t)

γ(t)− z0
dt

Note that (6.2) is a special case of (6.1).

Why:

1

2πi

∫ b

a

γ′(t)

γ(t)− z0
dt =

1

2πi

∫ b

a

d

dt
“ logC(γ(t)−z0)”dt =

1

2πi
logR(|γ(t)−z0|)+i“ arg(γ(t)−z0)”|bt=a

=
1

2πi
[i“ arg(γ(t)− z0)”] |bt=a

and the latter counts how many turns γ(t) − z0 did around the origin, which (after a
translation by z0) is the same as the number of turns that γ(t) did around z0.

Remark 6.17 For a contour C ⊂ C parametrized by γ : [a, b] → C,

1

2πi

∫
C

f ′(z)

f(z)− z0
dz =

1

2πi

∫ b

a

f ′(γ(t))

f(γ(t))− z0
γ′(t)dt = Indz0(f ◦ γ)

that is, the winding number of f(C) around z0.

16From Wikipedia: In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and
Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index
(related to the dimension of the space of solutions) is equal to the topological index (defined in terms of some
topological data). It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch
theorem, as special cases, and has applications to theoretical physics.
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Consequences:

Theorem 6.18 (Corrolary 6.1†) If f analytic on and inside the simple closed contour C, and
z0 ̸∈ C, then

Indz0(f(C)) =
1

2πi

∫
C

f ′(z)

f(z)− z0
dz = Nz0(f),

the number of solutions inside C to f(z) = z0 (counting multiplicities).
Take z0 = 0 to count the zeros.

Theorem 6.19 (Rouché’s Theorem 6.4†) Assume f and h are analytic inside and on the closed
simple contour C. If

|h(z)| < |f(z)| for all z ∈ C

then f and f + h have the same number of zeros inside C.

Remark 6.20 Note that the condition is imposed only along C, but it implies what happens
inside C.

Rouché’s Theorem can be used to prove:

Theorem 6.21 (Open Mapping Theorem 6.5†) If f is analytic and not constant, then it is
an open mapping: the image of an open set is open.

Remark 6.22 One can give another proof of the Fundamental Theorem of Algebra using Rouché:
let P (z) = anz

n + · · · + a1z + a0 be a polynomial of degree n with complex coefficients; then
|P (z)− anz

n| < |anzn| for |z| large enough, so Rouché implies that P (z) and anz
n have the same

number of zeros in C.

References

[Rud87] Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition,
1987.

[Wei] Weierstrass Product Theorem. https://encyclopediaofmath.org/index.php?title=

Weierstrass_theorem#Infinite_product_theorem. Accessed: 2025-04-22.

23

https://encyclopediaofmath.org/index.php?title=Weierstrass_theorem#Infinite_product_theorem
https://encyclopediaofmath.org/index.php?title=Weierstrass_theorem#Infinite_product_theorem

	Terminology, highlights & connections
	Highlights
	Terminology

	Chapter 1: Complex Numbers
	Section 1.7: The Riemann sphere and stereographic projection

	Chapter 2: Analytic Functions
	Section 2.2: Limits and Continuity
	Section 2.3: Analyticity
	Section 2.4: The Cauchy-Riemann Equations
	Section 2.5: Harmonic functions

	Chapter 3: Elementary Functions
	Section 3.3: The Logarithmic Function
	Section 3.4: Washers, Wedges, and Walls
	Section 3.5: Complex Powers and Inverse Trigonometric Functions

	Chapter 4: Complex Integration
	4.1: Contours
	4.2: Contour Integrals
	4.3 Independence of Path
	4.4 Cauchy's Integral Theorem
	4.5 Cauchy's Integral Formula and Its Consequences
	4.6 Bounds for Analytic Functions

	Chapter 5: Series Representations for Analytic Functions
	Review from Calculus II; more details in the book
	Main Results from 5.2-5.5
	5.6 Zeros and Singularities

	Chapter 6: Residue Theory
	6.1 Cauchy's Residue Theorem
	6.2 Trigonometric Integrals over [0,2]: 02 U(,) etc.
	6.3 Improper Integrals of Certain Functions over R: - P(x)/Q(x) d x
	6.4 Improper Integrals Involving Trigonometric Functions: - (kx)P(x)Q(x) d x
	6.5 Indented Contours, e.g. p.v. -eixx d x
	6.6 Integrals Involving Multiple-Value Functions, e.g. 0d xx(x+4)
	6.7 The Argument Principle and Rouché's Theorem


