Problem 1.
(a) The points $(3, -1, 2)$ and $(-1, 3, -4)$ are the endpoints of a diameter of a sphere.
 (i) Determine the center and radius of the sphere.
 (ii) Find an equation for the sphere.

(b) Given the vectors $a = 2i - j + 2k, b = 3i + 2j - k, c = i + 2k$.
 (i) Calculate $2a \cdot (b - 3c)$.
 (ii) Determine the vector projection of c onto b.
 (iii) Find the cosine of the angle between a and b.
 (iv) Find a unit vector that is perpendicular to the plane determined by a and c.

Problem 2. Given the planes $P_1 : 2(x - 1) - (y + 1) - 2(z - 2) = 0, P_2 : 4x - 2y + 5z = 3$, and the point $Q : (-2, 7, 4)$.
(a) Determine whether P_1 and P_2 are parallel, coincide, perpendicular, or none of the preceding.
(b) Find an equation for the plane through Q which is parallel to P_1.
(c) Determine scalar parametric equations for the line through Q which is parallel to the line of intersection of P_1 and P_2.

Problem 3. The position of an object at time t is given by:
\[r(t) = e^{-t}i + e^t j - t\sqrt{2}k, \quad 0 \leq t < \infty \]
(a) Determine the velocity and the speed of the object at time t.
(b) Determine the acceleration of the object at time t.
(c) Find the distance that the object travels during the time interval $0 \leq t < 1$.

Problem 4.
(a) A curve C in the plane is defined by the parametric equations: $x = t^2 + 1, \ y = \frac{4}{3}t^3 - 1$.
 (i) Find the length of C from $t = 0$ to $t = 2$.
 (ii) Find the curvature of C at $t = 1$.

(b) The vector function $r(t) = \sin 2t i - \cos 2t j + t\sqrt{5}k$ determines a curve C in space.
 (i) Find the unit tangent vector and the principal unit normal.
 (ii) Determine the curvature of C at time t.
 (iii) Determine the tangential and normal component of the acceleration vector.
Problem 5. Let \(f(x,y) = x \ln(x/y) + xy^2 \).
(a) Calculate \(f_{xx} \) and \(f_{yz} \).
(b) Determine the directional derivative of \(f \) at the point \((2,2)\) in the direction of the vector \(a = i - 2j \).
(c) Suppose that \(x = st e^t \) and \(y = 2se^t \). Calculate \(\frac{\partial f}{\partial t} \).
(d) Determine an equation for the tangent plane to the surface \(z = f(x,y) \) at the point \((2,2,8)\) on the surface.

Problem 6. Let \(f(x,y,z) = 2xy^2 + 2yz^2 + 2x^2z \).
(a) Determine the maximum directional derivative of \(f \) at the point \((1,-1,1)\).
(b) Find the directional derivative of \(f \) at the point \((-2,1,-1)\) in the direction parallel to the line \(x = 34t, y = 2 - t, z = 3t \).
(c) Determine symmetric equations for the normal line to the level surface \(f(x,y,z) = -2 \) at the points \((-1,2,1)\).
(d) Suppose the \(x = t^2 + 1, y = 2t, z = t^3 \). Calculate \(\frac{df}{dt} \).

Problem 7.
(a) Let \(f(x,y) = 3x^2y - 2y^2 - 3x^2 - 8y + 2 \).
(i) Find the stationary points of \(f \).
(ii) For each stationary point \(P \) found in (i), determine whether \(f \) has a local maximum, a local minimum, or a saddle point at \(P \).
(b) Determine the minimum value of \(f(x,y) = 2x^2 + xy - y^2 + 1 \) subject to the constraint \(2x + 3y = 16 \).

Problem 8.
(a) Find the absolute maximum and absolute minimum values of \(f(x,y) = x^2 + 2y^2 - 2x + 2 \) on the closed disk \(D : x^2 + y^2 \leq 4 \).
(b) Find the absolute maximum and absolute minimum values of \(f(x,y) = 2 + 2x + 2y - x^2 - y^2 \) on the closed triangular region bounded by the lines \(x = 0, y = 0, x + y = 9 \).
Problem 9.
(a) An open-topped rectangular container is to have a volume of 32 cubic meters. Find the dimensions of the container having the smallest surface area.

(b) The temperature T at a point (x, y, z) on the sphere $x^2 + y^2 + z^2 = 1$ is given by $T(x, y, z) = 400xyz^2$. What are the maximum and minimum temperatures?

Problem 10.
(a) Given the repeated integral $\int_0^2 \int_{x^2}^4 2x \cos(y^2) \, dy \, dx$. Determine an equivalent repeated integral with the order of integration reversed. Evaluate one of the two integrals.

(b) Express the area of the region bounded by the curves $y = 2x$ and $y = x^2$ by a repeated integral integrating: (i) first with respect to y, then with respect to x; (ii) first with respect to x, then with respect to y.

(c) Use a double integral to find the volume of the solid S in the first octant that is bounded above by the surface $z = 4 - x^2 - y^2$, below by the x, y-plane, and on the sides by the planes $y = 0$ and $y = x$.

Problem 11.
(a) Evaluate $\int \int \int_T 2yz \, dx \, dy \, dz$ where T is the solid in the first octant bounded above by the cylinder $z = 4 - x^2$ below by the x, y-plane, and on the sides by the planes $z = 0$, $x = 0$, $y = 2x$, and $y = 4$.

(b) Set up a triple integral in cylindrical coordinates that gives the volume of the solid in the first octant that is bounded above by the hemisphere $z = \sqrt{2 - x^2 - y^2}$, below by the paraboloid $z = x^2 + y^2$ and on the sides by the x, z- and y, z-planes.

(c) Set up a triple integral in spherical coordinates that gives the volume of the solid that lies outside the cone $z = \sqrt{x^2 + y^2}$ and inside the hemisphere $z = \sqrt{1 - x^2 - y^2}$.

Problem 12.
(a) Let $\mathbf{h}(x, y, z) = xy\mathbf{i} + y\mathbf{j} - yx\mathbf{k}$, and let C be the curve given by $\mathbf{r}(u) = u\mathbf{i} + u^2\mathbf{j} + 2u\mathbf{k}$, $0 \leq u \leq 1$. Calculate $\int_C \mathbf{h}(\mathbf{r}) \cdot d\mathbf{r}$.

(b) Show that $\mathbf{h}(x, y) = (6xy - y^3)\mathbf{i} + (4y + 3x^2 - 3xy^2)\mathbf{j}$ is the gradient of a function f. Use this information to calculate $\int_C \mathbf{h}(\mathbf{r}) \cdot d\mathbf{r}$ where C is the curve consisting of the line segment from $(0, 0)$ to $(2, 4)$ and the parabola $y = x^2$ from $(2, 4)$ to $(3, 9)$.
Problem 13.

(a) Let \(h(x, y) = 2xy^3 i + 4x^2y^2 j \). Calculate \(\oint_C \mathbf{h}(\mathbf{r}) \cdot d\mathbf{r} \) where \(C \) is the boundary of the triangular region in the first quadrant bounded by the x-axis, the line \(x = 1 \) and the curve \(y = x^3 \).

(b) Let \(g(x, y) = (2xy + e^x - 3) i + (x^2 - y^2 + \sin y) j \). Calculate \(\oint_C \mathbf{g}(\mathbf{r}) \cdot d\mathbf{r} \) where \(C \) is the ellipse \(4x^2 + 9y^2 = 36 \).

(c) Use Green’s Theorem to find the area enclosed by the astroid \(\mathbf{r}(u) = \cos^3 u \mathbf{i} + \sin^3 u \mathbf{j}, \ 0 \leq u \leq 2\pi \).