EXERCISES FOR MATH 2331 DUE APRIL 15

(1) Find an orthogonal basis for the column space of

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

(2) Find a least-squares solution of $A \mathbf{x}=\mathbf{b}$ by (a) constructing the normal equations for $\hat{\mathbf{x}}$ and (b) solving for $\hat{\mathbf{x}}$. Then (c) find the distance from $A \hat{\mathbf{x}}$ to \mathbf{b}

$$
A=\left[\begin{array}{cc}
1 & 2 \\
0 & -1 \\
0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

(3) Find the equation $y=a x+b$ of the least-squares line that best fits these data points:

$$
(-2,4)(-1,2),(1,0),(2,0) .
$$

(4) Let

$$
\mathbf{v}=\left[\begin{array}{l}
3 \\
4 \\
5 \\
6
\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

Let $W=\operatorname{Span}\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$. Express \mathbf{v} as the sum of a vector in W and a vector orthogonal to W.

