EXERCISES FOR MATH 2331 DUE APRIL 15

(1) Find an orthogonal basis for the column space of

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \tag{8pts}\\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Solution Use Gram-Schmidt: Let $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right]$. Let $\mathbf{v}_{1}=\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
Let $\mathbf{v}_{2}=\mathbf{a}_{2}-\frac{\mathbf{v}_{1}^{T} \mathbf{a}_{2}}{\left\|\mathbf{v}_{1}\right\|^{2}}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]-\frac{2}{4}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right]$.
Let $\mathbf{v}_{3}=\mathbf{a}_{3}-\frac{\mathbf{v}_{1}^{T} \mathbf{a}_{3}}{\left\|\mathbf{v}_{1}\right\|^{2}}-\frac{\mathbf{v}_{2}^{T} \mathbf{a}_{3}}{\left\|\mathbf{v}_{2}\right\|^{2}}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]-\frac{2}{4}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]-0 \mathbf{v}_{2}=\frac{1}{2}\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ -1\end{array}\right]$
Then $\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ is an orthogonal basis for $\operatorname{Col} A$.
(2) Find a least-squares solution of $A \mathbf{x}=\mathbf{b}$ by (a) constructing the normal equations for $\hat{\mathbf{x}}$ and (b) solving for $\hat{\mathbf{x}}$. Then (c) find the distance from $A \hat{\mathbf{x}}$ to \mathbf{b}.

$$
A=\left[\begin{array}{cc}
1 & 2 \\
0 & -1 \\
0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Solution

(a) Normal equations: $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}: \quad A^{T} A=\left[\begin{array}{ll}1 & 2 \\ 2 & 6\end{array}\right] . \quad A^{T} \mathbf{b}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$.

Normal equations are:

$$
\left[\begin{array}{ll}
1 & 2 \tag{6pts}\\
2 & 6
\end{array}\right] \hat{\mathbf{x}}=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

(b) Solve: $\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1}\left[\begin{array}{l}2 \\ 4\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}6 & -2 \\ -2 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right] . \quad(6 \mathrm{pts})$
(c) $\|A \hat{x}-\mathbf{b}\|: \quad A \hat{x}=\left[\begin{array}{cc}1 & 2 \\ 0 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 0\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 0\end{array}\right] . A \hat{x}-\mathbf{b}=\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right]$ and $\|A \hat{x}-\mathbf{b}\|=1$.
(6 pts)
(3) Find the equation $y=a x+b$ of the least-squares line that best fits these data points:

$$
(-2,4)(-1,2),(1,0),(2,0) .
$$

Solution
(a) Write the equations that would be true if the line $y=a x+b$ passed through all four points:

$$
\begin{align*}
-2 a+b & =4 \tag{4pts}\\
-1 a+b & =2 \\
1 a+b & =0 \\
2 a+b & =0
\end{align*}
$$

(b) Next, write this system in matrix form:

$$
\left[\begin{array}{cc}
-2 & 1 \tag{4pts}\\
-1 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
b \\
b \\
b \\
b
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
0 \\
0
\end{array}\right], \text { or } A \mathbf{x}=\mathbf{c}
$$

(c) Next, multiply both sides of this equation by A^{T}.

$$
A^{T} A=\left[\begin{array}{cc}
10 & 0 \\
0 & 4
\end{array}\right], \quad A^{T} \mathbf{c}=\left[\begin{array}{c}
-10 \\
6
\end{array}\right]
$$

So the new system is

$$
\left[\begin{array}{c}
-10 \\
6
\end{array}\right]\left[\begin{array}{l}
\hat{x_{1}} \\
\hat{x_{2}}
\end{array}\right]=\left[\begin{array}{c}
-10 \\
6
\end{array}\right]
$$

(d) The solution is

$$
\hat{x_{1}}=-1=a, \quad \hat{x_{2}}=\frac{3}{2}=b
$$

The least-squares line for these data points is

$$
\begin{equation*}
y=-x+\frac{3}{2} . \tag{4pts}
\end{equation*}
$$

An alternate method of solution is available since the columns of $A, \mathbf{a}_{1}, \mathbf{a}_{2}$ are orthogonal. See p. 366 of text. The orthogonal projection of \mathbf{c} onto $\operatorname{Col} A$ is

$$
\begin{equation*}
\hat{\mathbf{c}}=\frac{\mathbf{a}_{1}^{T} \mathbf{c}}{\left\|\mathbf{a}_{1}\right\|^{2}} \mathbf{a}_{1}+\frac{\mathbf{a}_{2}^{T} \mathbf{c}}{\left\|\mathbf{a}_{2}\right\|^{2}} \mathbf{a}_{2} \tag{8pts}
\end{equation*}
$$

Then $\hat{x_{1}}=\frac{\mathbf{a}_{1}^{T} \mathbf{c}}{\left\|\mathbf{a}_{1}\right\|^{2}}=\frac{-10}{10}=-1, \hat{x_{2}}=\frac{\mathbf{a}_{2}^{T} \mathbf{c}}{\left\|\mathbf{a}_{2}\right\|^{2}}=\frac{6}{4}=\frac{3}{2}$
(4) Let

$$
\mathbf{v}=\left[\begin{array}{l}
3 \\
4 \\
5 \\
6
\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

Let $W=\operatorname{Span}\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$. Express \mathbf{v} as the sum of a vector in W and a vector orthogonal to W.
Solution Since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal set, we can compute

$$
\begin{aligned}
\operatorname{proj}_{W} \mathbf{v} & =\frac{\mathbf{u}_{1}^{T} \mathbf{v}}{\left\|\mathbf{u}_{1}\right\|^{2}} \mathbf{u}_{1}+\frac{\mathbf{u}_{2}^{T} \mathbf{v}}{\left\|\mathbf{u}_{2}\right\|^{2}} \mathbf{u}_{1}+\frac{\mathbf{u}_{3}^{T} \mathbf{v}}{\left\|\mathbf{u}_{3}\right\|^{2}} \mathbf{u}_{3} \\
& =\frac{1}{3}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+\frac{14}{3}\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]+\frac{-5}{3}\left[\begin{array}{c}
0 \\
-1 \\
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
5 \\
2 \\
3 \\
6
\end{array}\right]
\end{aligned}
$$

Then $\mathbf{v}^{\perp}=\mathbf{v}-\operatorname{proj}_{W} \mathbf{v}=\left[\begin{array}{c}-2 \\ 2 \\ 2 \\ 0\end{array}\right]$. Check that $\mathbf{v}^{\perp} \perp W$.

