EXERCISES FOR MATH 2331 DUE APRIL 27

- (1) Find a singular value decomposition for the rotation matrix $R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.
- (2) (a) Orthogonally diagonalize $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ (find P and D).
 - (b) Find a spectral decomposition of A.
 - (c) For $\mathbf{x} \in \mathbb{R}^3$, let $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Find the maximum and minimum values of Q on the unit sphere $S = [\mathbf{x} \in \mathbb{R}^3 : \mathbf{x}^T \mathbf{x} = 1]$
- (3) For each of the quadratic forms Q_i below, determine if Q is positive definite, negative definite, or indefinite. Then find an orthogonal change of coordinates that transforms Q_i into a quadratic form with no cross-product terms.
 - (a) $Q_1(x_1, x_2) = -2x_1^2 + 2x_1x_2 + -2x_2^2$. (b) $Q_2(x_1, x_2) = 4x_1^2 + 2x_1x_2 + 4x_2^2$. (c) $Q_3(x_1, x_2) = -x_1^2 + 4x_1x_2 x_2^2$.