EXERCISES FOR MATH 2331 DUE APRIL 27

(1) Find a singular value decomposition for the rotation matrix $R=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
(2) (a) Orthogonally diagonalize $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ (find P and $\left.D\right)$.
(b) Find a spectral decomposition of A.
(c) For $\mathbf{x} \in \mathbb{R}^{3}$, let $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$. Find the maximum and minimum values of Q on the unit sphere $S=\left[\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x}^{T} \mathbf{x}=1\right]$
(3) For each of the quadratic forms Q_{i} below, determine if Q is positive definite, negative definite, or indefinite. Then find an orthogonal change of coordinates that transforms Q_{i} into a quadratic form with no cross-product terms.
(a) $Q_{1}\left(x_{1}, x_{2}\right)=-2 x_{1}^{2}+2 x_{1} x_{2}+-2 x_{2}^{2}$.
(b) $Q_{2}\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+2 x_{1} x_{2}+4 x_{2}^{2}$.
(c) $Q_{3}\left(x_{1}, x_{2}\right)=-x_{1}^{2}+4 x_{1} x_{2}-x_{2}^{2}$.

