\qquad

1. Compute the product $A \mathbf{x}$, where

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-4 & 5 & -6 \\
7 & -8 & 9
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

2. Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(a) Determine whether \mathbf{b}_{1} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(b) Determine whether \mathbf{b}_{2} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(c) If \mathbf{b}_{1} or \mathbf{b}_{2} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, find weights x_{1}, x_{2}, x_{3} such that $\mathbf{b}_{i}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}$.
3. Let

$$
A=\left[\begin{array}{ccc}
1 & -2 & 4 \\
1 & -1 & 3 \\
1 & 3 & 14
\end{array}\right]
$$

Does the equation $A \mathbf{x}=\mathbf{b}$ have a solution $\mathbf{x} \in \mathbb{R}^{3}$ for every $\mathbf{b} \in \mathbb{R}^{3}$?
4. Write the augmented matrix for the linear system that corresponds to the matrix equation $A \mathbf{x}=\mathbf{b}$, Then solve the system and write the solution as a vector.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-3 & -5 & -1 \\
0 & 2 & 3
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

5. Let

$$
A=\left[\begin{array}{ccccc}
1 & 3 & 0 & 4 & 5 \\
2 & 6 & 1 & 7 & 8 \\
3 & 9 & 0 & 10 & 11
\end{array}\right]
$$

Describe all solutions of $A \mathbf{x}=\mathbf{0}$ in parametric vector form
6. Suppose A is a 3×6 matrix with 3 pivot positions.
(a) Does the equation $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution?
(b) Does the equation $A \mathbf{x}=\mathbf{b}$ have at least one solution for every $\mathbf{b} \in \mathbb{R}^{3}$?
7. Suppose A is a 6×3 matrix with 3 pivot positions.
(a) Does the equation $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution?
(b) Does the equation $A \mathbf{x}=\mathbf{b}$ have at least one solution for every $\mathbf{b} \in \mathbb{R}^{6}$?

