Math 2331 January 30, 2020

Homework 3

Name ____

1. Determine if these vectors are linearly independent. Justify your answer.

$$\mathbf{v}_1 = \begin{bmatrix} 2\\0\\3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1\\3\\0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$$

2. Determine if these vectors are linearly independent. Justify your answer.

$$\mathbf{v}_1 = \begin{bmatrix} 2\\0\\3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1\\3\\0 \end{bmatrix}.$$

_ _

_ _

3. Determine if these vectors are linearly independent. Justify your answer.

$$\mathbf{v}_1 = \begin{bmatrix} 2\\ 3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1\\ -5 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 3\\ 1 \end{bmatrix}.$$

4. Determine if these vectors are linearly independent. Justify your answer.

$$\mathbf{v}_1 = \begin{bmatrix} 2\\0\\3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

5. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{u} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$ into $\begin{bmatrix} 1\\ 4 \end{bmatrix}$ and maps $\mathbf{v} = \begin{bmatrix} 5\\ -2 \end{bmatrix}$ into $\begin{bmatrix} 5\\ -1 \end{bmatrix}$. Use the fact that T is linear to find:

- (a) T(3**u**)
- (b) $T(\mathbf{u} 2\mathbf{v})$
- (c) T(2u + v).
- 6. A homogeneous linear system of equations has a coefficient matrix A which is row equivalent to the following matrix R in reduced echelon form:

$$R = \begin{bmatrix} 1 & 5 & 0 & 2 & 0 & 5 \\ 0 & 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & -3 \end{bmatrix}$$

- (a) Describe the solution set in parametric vector form (See p. 44-45).
- (b) Find the solution with $x_2 = 1$, $x_4 = 0$, $x_6 = 0$.
- (c) Suppose the first column of A is:

$$\begin{bmatrix} 2\\ -1\\ 4 \end{bmatrix}$$

What is the second column of A? *Hint*: Use the answer to part b.

(d) Find the solution with $x_2 = 0$, $x_4 = 1$, $x_6 = 0$.

(e) If, in addition to the above, the third column of A is

$$\begin{bmatrix} 1\\ 3\\ 4 \end{bmatrix},$$

Name ____

what is the fourth column of A? Hint: Use the answer to part d.

- (f) Are the pivot columns of R linearly independent, or linearly dependent? What (if anything) does this mean for the pivot columns of A?
- 7. Let $T : \mathbb{R}^n \to \mathbb{R}^m$, and suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a set of vectors in \mathbb{R}^n such that $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$ is linearly independent. Show that $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent.
- 8. Find the standard matrix of a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that first rotates points through $\pi/3$ radians (counterclockwise) and then performs a horizontal shear that transforms \mathbf{e}_2 into $\mathbf{e}_2 + 3\mathbf{e}_1$ and which leaves \mathbf{e}_1 unchanged.
- 9. Show that if the columns of AB are linearly independent, then the columns of B are linearly independent.