\qquad

1. Determine if these vectors are linearly independent. Justify your answer.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

2. Determine if these vectors are linearly independent. Justify your answer.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]
$$

3. Determine if these vectors are linearly independent. Justify your answer.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-5
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

4. Determine if these vectors are linearly independent. Justify your answer.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps $\mathbf{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ into $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and maps $\mathbf{v}=\left[\begin{array}{c}5 \\ -2\end{array}\right]$ into $\left[\begin{array}{c}5 \\ -1\end{array}\right]$. Use the fact that T is linear to find:
(a) $T(3 \mathbf{u})$
(b) $T(\mathbf{u}-2 \mathbf{v})$
(c) $T(2 \mathbf{u}+\mathbf{v})$.
6. A homogeneous linear system of equations has a coefficient matrix A which is row equivalent to the following matrix R in reduced echelon form:

$$
R=\left[\begin{array}{cccccc}
1 & 5 & 0 & 2 & 0 & 5 \\
0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & -3
\end{array}\right]
$$

(a) Describe the solution set in parametric vector form (See p. 44-45).
(b) Find the solution with $x_{2}=1, x_{4}=0, x_{6}=0$.
(c) Suppose the first column of A is:

$$
\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]
$$

What is the second column of A ? Hint: Use the answer to part b.
(d) Find the solution with $x_{2}=0, x_{4}=1, x_{6}=0$.
\qquad
(e) If, in addition to the above, the third column of A is

$$
\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right],
$$

what is the fourth column of A ? Hint: Use the answer to part d.
(f) Are the pivot columns of R linearly independent, or linearly dependent? What (if anything) does this mean for the pivot columns of A ?
7. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and suppose $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ is a set of vectors in \mathbb{R}^{n} such that $\left\{T\left(\mathbf{v}_{1}\right), \cdots, T\left(\mathbf{v}_{p}\right)\right\}$ is linearly independent. Show that $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ is linearly independent.
8. Find the standard matrix of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first rotates points through $\pi / 3$ radians (counterclockwise) and then performs a horizontal shear that transforms \mathbf{e}_{2} into $\mathbf{e}_{2}+3 \mathbf{e}_{1}$ and which leaves \mathbf{e}_{1} unchanged.
9. Show that if the columns of $A B$ are linearly independent, then the columns of B are linearly independent.

