EXERCISES FOR MATH 2331 DUE FEBRUARY 11

(1) Let A be an $n \times n$ matrix. Show that if A is not invertible, then the columns of A are linearly dependent.
(2) Use the algorithm on page 110 to find the inverse of this matrix, if it exists:

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 1 & 2
\end{array}\right]
$$

(3) Determine which of these matrices is invertible. For any that are invertible, find the inverse.
(a) $A=\left[\begin{array}{ccc}1 & 3 & 7 \\ 2 & 7 & 15 \\ 3 & 10 & 23\end{array}\right]$.
(b) $B=\left[\begin{array}{ccc}1 & 3 & 7 \\ 2 & 7 & 15 \\ 3 & 10 & 22\end{array}\right]$.
(4) Find a basis for $\operatorname{Col}(\mathrm{A})$, and a basis for $\mathrm{Nul}(\mathrm{A})$, if $A=\left[\begin{array}{cccc}1 & 0 & 2 & 3 \\ 0 & 2 & -6 & 4 \\ 4 & 1 & 5 & 14\end{array}\right]$.
(5) Let $\beta=\{(1,3),(3,2)\}$. Please accept β as a basis for \mathbb{R}^{2} and find the coordinate vector $[\mathbf{x}]_{\beta}$, if $\mathbf{x}=(-2,5)$.
(6) For a certain 2×5 matrix A, the system $A \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^{2}$. What is the dimension of $\operatorname{Nul}(A) ?$
(7) If A is a 12×8 matrix, how large could $\operatorname{dim}(N u l(A))$ be?
(8) Use the algorithm on page 110 to find the inverse of this matrix, if it exists:

$$
A=\left[\begin{array}{lll}
2 & 2 & 2 \\
1 & 2 & 2 \\
1 & 1 & 2
\end{array}\right]
$$

