EXERCISES FOR MATH 2331 DUE FEBRUARY 19

(1) Let $D_{1}=-2, D_{2}=\operatorname{det}\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right], D_{3}=\operatorname{det}\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right], D_{4}=$ $\operatorname{det}\left[\begin{array}{cccc}-2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$, etc. Use a cofactor expansion to find a formula for D_{n+1} in terms of D_{n} and D_{n-1}. Calculate D_{4}, D_{5} and D_{10}. Can you prove a formula for D_{n} which does not use other $D^{\prime} s$?
(2) Let $\gamma=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$ and let β be the standard basis of \mathbb{R}^{2}.
(a) Suppose $[\mathbf{x}]_{\gamma}=\left[\begin{array}{l}5 \\ 7\end{array}\right]$. Find $[\mathbf{x}]_{\beta}$.
(b) Suppose $[\mathbf{y}]_{\beta}=\left[\begin{array}{c}4 \\ -5\end{array}\right]$. Find $[\mathbf{y}]_{\gamma}$.
(3) Find the determinant of $A=\left[\begin{array}{cccc}1 & 3 & 2 & -4 \\ 0 & 1 & 2 & -5 \\ 2 & 7 & 6 & -3 \\ -3 & -10 & -7 & 2\end{array}\right]$.

