EXERCISES FOR MATH 2331 DUE FEBRUARY 19

(1) Let
$$D_1 = -2$$
, $D_2 = \det \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$, $D_3 = \det \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$, $D_4 = \det \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$, $D_4 = \det \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$, $D_4 = \det \begin{bmatrix} -2 & 1 & 0 \\ 0 & 1 & -2 \end{bmatrix}$, $D_4 = \det \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$, $D_4 = \det \begin{bmatrix} -2 & 1 & 0 \\ 0 & 1 & -2 \end{bmatrix}$

for D_{n+1} in terms of D_n and D_{n-1} . Calculate D_4 , D_5 and D_{10} . Can you prove a formula for D_n which does not use other D's?

(2) Let
$$\gamma = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix} \right\}$$
 and let β be the standard basis of \mathbb{R}^2 .
(a) Suppose $[\mathbf{x}]_{\gamma} = \begin{bmatrix} 5\\7 \end{bmatrix}$. Find $[\mathbf{x}]_{\beta}$.
(b) Suppose $[\mathbf{y}]_{\beta} = \begin{bmatrix} 4\\-5 \end{bmatrix}$. Find $[\mathbf{y}]_{\gamma}$.
(3) Find the determinant of $A = \begin{bmatrix} 1 & 3 & 2 & -4\\0 & 1 & 2 & -5\\2 & 7 & 6 & -3\\-3 & -10 & -7 & 2 \end{bmatrix}$.