Show all work!
In questions $1-4$, determine if the given set is a subspace of \mathbb{P}_{2}. Justify your answers.

1. All polynomials p in \mathbb{P}_{2} such that $p(1)=0$.
2. All polynomials p in \mathbb{P}_{2} such that $p(0)=1$.
3. All polynomials p in \mathbb{P}_{2} such that $p^{\prime}(1)=0$.
4. All polynomials p in \mathbb{P}_{2} such that $p^{\prime}(0)=1$.
5. Show that the set of 2×2 matrices A such that $A\left[\begin{array}{l}3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is a vector subspace of $M_{2 \times 2}$, the vector space of 2×2 matrices.
6. Let H be the kernel of the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}, T(p)=\left[\begin{array}{l}p(1) \\ p(2)\end{array}\right]$. Find a basis for H. Then find the dimension of the range of T.
