Show all work!

1. Find a basis and the dimension for this subspace of $\mathbb{R}^{4}:\left\{\left[\begin{array}{c}2 a+6 b-c \\ 4 a-3 b-2 c \\ -2 a-6 b+c\end{array}\right]: a, b, c \in \mathbb{R}\right\}$.

Is this set more naturally the column space of a matrix, the row space of a matrix, or the null space of a matrix?
2. Find a basis and the dimension for this subspace of \mathbb{R}^{3} :

$$
\begin{equation*}
\{(a, b, c): a-5 b+2 c=0, b-3 c=0, a-4 b-c=0\} \tag{1}
\end{equation*}
$$

Is this set more naturally the column space of a matrix, the row space of a matrix, or the null space of a matrix?
3. Assume that the matrix A is row equivalent to B. Without calculation, list $\operatorname{rank}(A)$ and $\operatorname{dim}(N u l A)$. Then find bases for $\operatorname{Col} A, \operatorname{Row} A$, and NulA.

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \tag{2}\\
1 & 3 & 5 & 7 & 9 & 11 \\
1 & 1 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 5 & 7 & 9 \\
2 & 3 & 4 & 6 & 8 & 10
\end{array}\right], B=\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

4. Let $H=\left\{p(t) \in \mathbb{P}_{4}: p^{\prime}(0)=0, p(0)=0\right\}$.
(a) Show that H is a vector subspace of \mathbb{P}_{4}.
(b) Find a basis and the dimension of H.
(c) Let $T: H \rightarrow \mathbb{P}_{2}, T(p(t))=p^{\prime \prime}(t)$. Please accept that T is a linear transformation. What is its rank?
5. Let $M=\left[\begin{array}{cc}\frac{2}{5} & \frac{1}{5} \\ \frac{3}{5} & \frac{4}{5}\end{array}\right]$. Find a steady state vector for M.
