EXERCISES FOR MATH 2331 DUE APRIL 1

(1) Find the characteristic polynomial and the (real) eigenvalues for the matrix

$$
A=\left[\begin{array}{cc}
-3 & 3 \\
8 & -1
\end{array}\right]
$$

For each eigenvalue, find a basis for the corresponding eigenspace.

Solution

$$
\operatorname{det}(A-\lambda I)=(-3-\lambda)(-1-\lambda)-24=\lambda^{2}+4 \lambda-21
$$

This factors as $(\lambda+7)(\lambda-3)$, The eigenvalues of A are $\lambda=-7$, 3. With $\lambda=3,(A-3 I)=\left[\begin{array}{cc}-6 & 3 \\ 8 & -4\end{array}\right]$. The null space of $A-3 I$ is the eigenspace for $\lambda=3$. A basis for this eigenspace is $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\} . A+7 I=\left[\begin{array}{ll}4 & 3 \\ 8 & 6\end{array}\right]$. A basis for the eigenspace for $\lambda=-7$ is $\left\{\left[\begin{array}{c}-3 \\ 4\end{array}\right]\right\}$.
(2) The matrix $A=\left[\begin{array}{cc}1 & 3 \\ 3 & -7\end{array}\right]$ has eigenvalues $\lambda_{1}=-8$ and $\lambda_{2}=2$. Find eigenvectors for A that correspond to these eigenvalues.

Solution $A+8 I=\left[\begin{array}{ll}9 & 3 \\ 3 & 2\end{array}\right]$ An eigenvector for $\lambda=-8$ is $\left[\begin{array}{c}-1 \\ 3\end{array}\right]$. $A-2 I=\left[\begin{array}{cc}-1 & 3 \\ 3 & -9\end{array}\right]$ An eigenvector for $\lambda=2$ is $\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
(3) Find an invertible matrix P and a real matrix $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ such that

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-4 & 5
\end{array}\right]=P C P^{-1}
$$

(See Theorem 9 on page 301).

Solution

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(1-\lambda)(5-\lambda)+8=\lambda^{2}-6 \lambda+13 \\
& =(\lambda-3)^{2}+4
\end{aligned}
$$

The eigenvalues are $\lambda=3 \pm 2 i$. $A-(3-2 i) I=\left[\begin{array}{cc}-2+2 i & 2 \\ -4 & 2+2 i\end{array}\right]$.
An eigenvector for $\lambda=3-2 i$ is $\left[\begin{array}{c}1+i \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]+i\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Let $P=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]$ as prescribed in Theorem 9. Then P is invertible and $P^{-1} A P=C=\left[\begin{array}{cc}3 & -2 \\ 2 & 3\end{array}\right]$, so that $A=P C P^{-1}$.
(4) Find an invertible matrix P and a diagonal matrix D such that

$$
A=\left[\begin{array}{cc}
1 & -3 \\
1 & 5
\end{array}\right]=P D P^{-1}
$$

Solution $\operatorname{det}(A-\lambda I)=\lambda^{2}-6 \lambda+8=(\lambda-4)(\lambda-2)$. A has eigenvalues 2, 4.
$A-2 I=\left[\begin{array}{cc}-1 & -3 \\ 1 & 3\end{array}\right]$. An eigenvector for $\lambda=2$ is $\mathbf{u}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
$A-4 I=\left[\begin{array}{cc}-3 & -3 \\ 1 & 3\end{array}\right]$. An eigenvector for $\lambda=4$ is $\mathbf{v}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
Then $P=\left[\begin{array}{ll}\mathbf{u} & \mathbf{v}\end{array}\right]=\left[\begin{array}{cc}-3 & -1 \\ 1 & 1\end{array}\right]$, and $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$.
(5) If $A=\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$, find all of the eigenvalues of A, their algebraic multiplicities, and a basis for each eigenspace. Is A diagonalizable?
Solution Because A is upper triangular, the diagonal entries are the eigenvalues: $\lambda_{1}=2$ with algebraic multiplicity 3 , and $\lambda_{2}=3$ with algebraic multiplicity 2.

$$
A-2 I=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \quad A-3 I=\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Both of these matrices have rank 4, so the dimension of each eigenspace is 1.

A basis for the eigenspace for $\lambda=2$ is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$, and for $\lambda=3,\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]\right\}$.

