EXERCISES FOR MATH 2331 DUE APRIL 1

(1) Find the characteristic polynomial and the (real) eigenvalues for the matrix

$$
A=\left[\begin{array}{cc}
-3 & 3 \\
8 & -1
\end{array}\right]
$$

For each eigenvalue, find a basis for the corresponding eigenspace.
(2) The matrix $A=\left[\begin{array}{cc}1 & 3 \\ 3 & -7\end{array}\right]$ has eigenvalues $\lambda_{1}=-8$ and $\lambda_{2}=2$. Find eigenvectors for A that correspond to these eigenvalues.
(3) Find an invertible matrix P and a real matrix $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ such that

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-4 & 5
\end{array}\right]=P C P^{-1}
$$

(See Theorem 9 on page 301).
(4) Find an invertible matrix P and a diagonal matrix D such that

$$
A=\left[\begin{array}{cc}
1 & -3 \\
1 & 5
\end{array}\right]=P D P^{-1}
$$

(5) If $A=\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$, find all of the eigenvalues of A, their algebraic multiplicities, and a basis for each eigenspace. Is A diagonalizable?

