(1) Let

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
\frac{1}{2} & 1 & 2 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
2 & -4 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 2 \\
0 & 0 & 1 \\
-\frac{1}{2} & 1 & -2
\end{array}\right]=P D P^{-1}
$$

Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.
(2) Diagonalize $A=\left[\begin{array}{cc}-4 & -1 \\ 1 & -2\end{array}\right]$ or explain why it is not diagonalizable.
(3) Diagonalize $A=\left[\begin{array}{cc}-4 & 2 \\ 1 & -2\end{array}\right]$ or explain why it is not diagonalizable.
(4) Suppose $\mathbf{v}, \mathbf{u}, \mathbf{w}$ are vectors in \mathbb{R}^{n} such that $\|\mathbf{v}\|=4,\|\mathbf{u}\|=3,\|\mathbf{w}\|=6$, $\mathbf{v} \cdot \mathbf{u}=10, \mathbf{v} \cdot \mathbf{w}=7, \mathbf{u} \cdot \mathbf{w}=-2$.
(a) Find $\|\mathbf{v}+\mathbf{u}\|$.
(b) Find the projection of \mathbf{w} onto the span of \mathbf{u}.
(5) Let $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 4\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-4 \\ 3\end{array}\right], \mathbf{u}=\left[\begin{array}{l}1 \\ 6\end{array}\right]$. Verify that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal basis for \mathbb{R}^{2} and express \mathbf{u} as a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

