EXERCISES FOR MATH 2331 DUE APRIL 8 WITH SOLUTIONS

(1) Let
$A=\left[\begin{array}{lll}2 & 0 & 0 \\ \frac{1}{2} & 1 & 2 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}2 & -4 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{1}{2} & 0 & 2 \\ 0 & 0 & 1 \\ -\frac{1}{2} & 1 & -2\end{array}\right]=P D P^{-1}$.
Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.

Solution The eigenvalues of A are the diagonal entries of $D: 2,2,1$. The eigenvectors are the columns of P, in the same order as the eigenvalues in $D: \lambda=2:\left\{\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 1\end{array}\right]\right\}$,
$\lambda=1:\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.
(2) Diagonalize $A=\left[\begin{array}{cc}-4 & -1 \\ 1 & -2\end{array}\right]$ or explain why it is not diagonalizable.

Solution $\operatorname{det}(A-\lambda I)=\lambda^{2}+6 \lambda+9=(\lambda-3)^{2} . \lambda=-3$ is an eigenvalue with algebraic multiplicity 2 .
$A+3 I=\left[\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right]$ has rank 1 , so that the eigenspace for $\lambda=-3$ has dimension 1. Thus \vec{A} is not diagonalizable.
(3) Diagonalize $A=\left[\begin{array}{cc}-4 & 2 \\ 1 & -2\end{array}\right]$ or explain why it is not diagonalizable.

Solution $\operatorname{det}(A-\lambda I)=\lambda^{2}+6 \lambda+6$. The roots are $\lambda=-3 \pm \sqrt{9-6}=$ $-3 \pm \sqrt{3}$. A is 2×2 with 2 distinct eigenvalues, so A is diagonalizable. With $\lambda=-3+\sqrt{3}, A-(-3+\sqrt{3}) I=\left[\begin{array}{cc}-1-\sqrt{3} & 2 \\ 1 & 1-\sqrt{3}\end{array}\right]$. A vector in the null space of this is $\mathbf{u}=\left[\begin{array}{c}-1+\sqrt{3} \\ 1\end{array}\right]$. An eigenvector for $\lambda=-3-\sqrt{3}$ is $\mathbf{v}=\left[\begin{array}{c}-1-\sqrt{3} \\ 1\end{array}\right]$. Then with $P=\left[\begin{array}{ll}\mathbf{u} & \mathbf{v}\end{array}\right]$ and $D=\left[\begin{array}{cc}-1+\sqrt{3} & 0 \\ 0 & -1-\sqrt{3}\end{array}\right]$, $A=P D P^{-1}$.
(4) Suppose $\mathbf{v}, \mathbf{u}, \mathbf{w}$ are vectors in \mathbb{R}^{n} such that $\|\mathbf{v}\|=4,\|\mathbf{u}\|=3,\|\mathbf{w}\|=6$, $\mathbf{v} \cdot \mathbf{u}=10, \mathbf{v} \cdot \mathbf{w}=7, \mathbf{u} \cdot \mathbf{w}=-2$.
(a) Find $\|\mathbf{v}+\mathbf{u}\|$.

Solution

$$
\begin{aligned}
\|\mathbf{v}+\mathbf{u}\|^{2} & =(\mathbf{v}+\mathbf{u}) \cdot(\mathbf{v}+\mathbf{u})=\mathbf{v} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{u} \\
& =\|\mathbf{v}\|^{2}+2 \mathbf{v} \cdot \mathbf{u}+\|\mathbf{u}\|^{2}=16+2 \cdot 7+9=39
\end{aligned}
$$

(b) Find the projection of \mathbf{w} onto the span of \mathbf{u}.

Solution $\operatorname{Proj}_{\mathbf{u}} \mathbf{w}=\frac{\mathbf{u}^{T} \mathbf{w}}{\mathbf{u}^{T} \mathbf{u}} \mathbf{u}=\frac{-2}{9} \mathbf{u}$. Since I did not provide \mathbf{u}, this is as far as we can go.
(5) Let $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 4\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-4 \\ 3\end{array}\right], \mathbf{u}=\left[\begin{array}{l}1 \\ 6\end{array}\right]$. Verify that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal basis for \mathbb{R}^{2} and express \mathbf{u} as a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

Solution
$\mathbf{v}_{1} \cdot \mathbf{v}_{2}=3(-4)+4 \cdot 3=0$, so $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal set of 2 nonzero vectors in \mathbb{R}^{2}. By Theorem 4 , the set is linearly independent, and the number of vectors equals the dimension of the space, so the set is a basis for \mathbb{R}^{2}. Then by Theorem $5, \mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$, where $c_{i}=\frac{\mathbf{v}_{i}^{T} \mathbf{u}}{\mathbf{v}_{i}^{T} \mathbf{v}_{i}}$, so $c_{1}=\frac{27}{25}$, $c_{2}=\frac{14}{25}$.

