Math	2433	3
April	9,	2010

Exam 2

Name_____ PS #

NO CALCULATORS!

- 1. Determine which of the following vector fields is the gradient of a function f(x,y). If it is, find all such functions f(x,y).
 - a. $\mathbf{V}(x,y) = (2xe^y \sin(x))\mathbf{i} + (x^2e^y + \cos(2y))\mathbf{j}$
 - **b.** $\mathbf{W}(x,y) = (x^2 e^{2y})\mathbf{i} + (2xy e^{2x})\mathbf{j}$
- 2. If $\nabla f(3,2) = 3\mathbf{i} 4\mathbf{j}$, $\mathbf{r}(t) = 3(4t+1)\mathbf{i} + 2e^{4t}\mathbf{j}$ and $h(t) = f(\mathbf{r}(t))$:

 9 pts
- 3. Suppose $f(x,y) = x\cos(y) + y\cos(z) + z\sin(x)$. 12 pts Find $f_{xx} + f_{yy} + f_{zz}$.
- 4. Find an equation for the tangent plane and scalar parametric equations for the normal line to the surface $xy^2 + 2z^2 = 20$, at the point (x,y,z) = (2,1,3).
 - a. Tangent plane:
 - b. Scalar parametric equations for normal line: 6 pts
- 5. a. Find a unit vector in the direction in which the function $f(x,y,z) = x^2ze^y + xz^2$ increases most rapidly, at $(x,y,z) = (1,\ln 2, 2)$.

8 pts

- b. What is the directional derivative of f at $\left(1,\,\ln 2,\,2\right)$ in this direction?
- c. Find the directional derivative of f in the direction of $2\mathbf{i}+6\mathbf{j}+3\mathbf{k}$ at $(x,y,z)=(1,\ln 2,\,2)$.
- 6. Find the maximum and minimum values of: $f(x,y) = x^2 6x + 2y^2 16y + 21 \quad \text{on the domain}$ $D = \left\{ \left(x,y \right) \colon 2 \le x \le 5, \ 1 \le y \le 6 \right\}, \quad \text{and find all points on this domain}$ at which these values occur.
- 7. Find all of the critical points of the function

$$f(x,y) = \frac{y^3}{3} + 2xy + x^2 - 3y$$

and determine whether each critical point yields a local maximum value, local minimum value, or saddle point. 14 pts