Math	243	3
April	3.	2009

Exam 2

Name_ PS #

NO CALCULATORS!

1. Determine which of the following vector fields is the gradient of a function f(x,y). If it is, find all such functions f(x,y).

a. $V(x,y) = (3x^2 + e^y)\mathbf{i} + (xe^y - 7y^3)\mathbf{j}$

b. $\mathbf{W}(x,y) = \left(\sin(x) + e^{y}\right)\mathbf{i} + \left(\cos(x)y + e^{x}\right)\mathbf{j}$

2. If $f(x,y) = 3x^2 - y^2$, $\mathbf{r}(0) = (2,3)$, $\mathbf{r}'(0) = (3,5)$ and $h(t) = f(\mathbf{r}(t))$:

9 pts

- 3. Find the point on the curve $y^2 x^2 = 1$ closest to the point (0,4).
- 4. a. Find an equation for the tangent plane to the surface $xy^2 + 2yz^2 = 40$, at the point (x,y,z) = (1,2,3). 8 pts
 - b. Find equations for the normal line to this surface at (x,y,z) = (1,2,3).
- 5. a. Find a unit vector in the direction in which the function $f(x,y) = \ln(1+12x+6y) y$ increases most rapidly, at (x,y) = (0,0).

8 pts

- b. What is the directional derivative of f in this direction?
 6 pts
- c. Find the directional derivative of f in the direction of $3\mathbf{i}-4\mathbf{j}$ at (x,y)=(0,0).
- 6. Suppose $f(x,y) = xe^{y} + ye^{z} + ze^{x}$. 12 pts Find $f_{xx} + f_{yy} + f_{zz}$.
- 7. Find all of the critical points of the function $f(x,y) = x^3 27x + y^2 6y$

and determine whether each critical point yields a maximum value, minimum value, or saddle point.

15 pts