Show all work!

1. An open box is to contain a volume of 3 cubic meters. Given that the material for the sides of the box costs 6 per square meter and the material for the bottom costs 9 per square meter, express the total cost C of the box as a function of the length l and width w.
2. Consider the level surfaces of $f(x, y, z)=x^{2}+2 x+y^{2}+6 y+20-z^{2}$. For what values of C is the surface with equation $f(x, y, z)=C$
(a) A hyperboloid of one sheet?
(b) A hyperboloid of two sheets?
3. Determine whether the function $f(x, y)=\frac{x^{3}}{x^{2}+y^{2}}$ has a limit as $(x, y) \rightarrow(0,0)$. If so, evaluate the limit.
4. Determine whether the function $f(x, y)=\frac{x}{x^{2}+y^{2}}$ has a limit as $(x, y) \rightarrow(0,0)$. If so, evaluate the limit.
5. Let $f(x, y)=\sin (x) \sinh (y)$. Calculate:
(a) $f_{x}(x, y)$
(b) $f_{y}(x, y)$
(c) $f_{x x}(x, y)$
(d) $f_{x x}(x, y)+f_{y y}(x, y)$.
6. Find the gradient of $f(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$. Can you identify f with a simple geometric quantity?
