Show all work!

1. Let $f(x, y)=7 x^{2} y-5 y^{2}-3 x$. Find the directional derivative of f at $(1,2)$ in the direction of $3 \mathbf{i}+4 \mathbf{j}$.
2. Let $f(x, y)=3 x^{2}-2 x y+y^{2}$.
(a) Find a unit vector \mathbf{u} that maximizes the directional derivative of f at $(2,3)$ in the direction \mathbf{u}.
(b) Find the maximum directional derivative of f at $(2,3)$.
3. Let $f(t)=\int_{0}^{t^{2}} e^{x^{2}} d x$. Find $f^{\prime}(2)$. Hint: Use the Fundamental Theorem of Calculus
4. Let $f(x, y)=\int_{y}^{x} e^{t^{2}} d t$. Find $\nabla f(x, y)$.
5. Let g be continuous on \mathbb{R}, let c be a positive constant and let $u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s$.
(a) Show that for $t>0, \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0$.
(b) Show that $\lim _{t \rightarrow 0+} \frac{\partial u}{\partial t}(x, t)=g(x)$.
6. Find $\frac{d u}{d t}$ if $u=e^{x} \cos y$ and $x=t^{2}, y=\pi t$.
