Show all work!

1. Suppose $z=f(x, y)$ is continuously differentiable, $f(1,4)=3$ and $\frac{\partial f}{\partial x}(1,4)=5$, $\frac{\partial f}{\partial y}(1,4)=2$. Then there is a function $x=g(y, z)$ defined in a neighborhood of $(y, z)=(4,3)$ with $g(y, z)$ continuously differentiable. Fiind $\frac{\partial g}{\partial y}(4,3)$
Hint: Start with the plane tangernt to the graph of f at $(x, y, z)=(1,4,3)$ and solve for $x-1$ (or $d x$).
2. Find the minimum and maximum values of $x y$ on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$. Also, identify the points on the ellipse at which the minimum and maximum values occur.
3. Determine which of these two vector fields is the gradient of a function $f(x, y)$. For the vector field that is a gradient, find all functions $f(x, y)$ such that $\nabla f(x, y)$ is the given vector field.
(a) $\mathbf{v}(x, y)=2 x e^{3 y} \mathbf{i}+\left(3 x^{2} e^{3 y}+5\right) \mathbf{j}$.
(b) $\mathbf{u}(x, y)=2 y e^{3 x} \mathbf{i}+\left(3 y^{2} e^{3 x}+5\right) \mathbf{j}$.
