Show all work!

1. Evaluate the integral of $f(x, y) = e^{-(x+y)}$ over the domain $\Omega = \{(x, y) : 0 \le x, 0 \le y, x+y \le z\}$. Solution: Ω can also be described with the inequalities $0 \le x \le z, 0 \le y \le z-x$. Then

$$\iint_{\Omega} e^{-(x+y)} dx dy = \int_{0}^{z} \int_{0}^{z-x} e^{-(x+y)} dy dx$$

= $\int_{x=0}^{z} e^{-x} (-e^{-y}) \Big|_{y=0}^{z-x} dx$
= $\int_{x=0}^{z} e^{-x} (1 - e^{x-z}) dx$
= $\int_{x=0}^{z} e^{-x} - e^{-z} dx$
= $-e^{-x} - xe^{-z} \Big|_{x=0}^{z} = 1 - e^{-z} - ze^{-z}.$

Remark 1 The function $f(x,y) = \begin{cases} e^{-(x+y)} & x \ge 0, \ y \ge 0\\ 0 & otherwise \end{cases}$ is a joint probability den-

sity function for two independent exponential random variables X, Y with mean 1. The calculation above computes the probability that $X + Y \leq z$. The result is the cumulative distribution function for Z = X + Y. The derivative of the result is the probability density function function for Z.

2. Reverse the order of integration and evaluate:

$$\int_0^{\sqrt{\pi/2}} \int_y^{\sqrt{\pi/2}} \sin\left(x^2\right) \, dx \, dy \tag{1}$$

Solution The domain of integration is $\{(x, y) : 0 \le y \le \sqrt{\pi/2}, y \le x \le \sqrt{\pi/2}\}$. This domain can also be described as $\{(x, y) : 0 \le x \le \sqrt{\pi/2}, 0 \le y \le x\}$. Thus, reversing the order of integration gives

$$\int_{x=0}^{\sqrt{\pi/2}} \int_{y=0}^{x} \sin(x^2) \, dy \, dx = \int_{x=0}^{\sqrt{\pi/2}} y \sin(x^2) \Big|_{y=0}^{x} dx$$
$$= \int_{x=0}^{\sqrt{\pi/2}} x \sin(x^2) \, dx = \int_{u=0}^{\pi/2} \sin(u) \, \frac{du}{2} = \frac{1}{2}.$$

3. Integrate $f(x, y) = e^{-(x^2+y^2)}$ over the annular region $\ln(2) \le x^2 + y^2 \le \ln(5)$. Solution In polar coordinates, the integral is

$$\int_{\theta=0}^{2\pi} \int_{r=\sqrt{\ln(2)}}^{\sqrt{\ln 5}} e^{-r^2} r \, dr \, d\theta = 2\pi \int_{u=\ln(2)}^{\ln(5)} e^{-u} \, \frac{du}{2} = \pi \left(e^{-\ln(2)} - e^{-\ln(5)} \right)$$
$$= \pi \left(\frac{1}{2} - \frac{1}{5} \right) = \frac{3\pi}{10}.$$