Show all work!

1. Evaluate the integral of $f(x, y)=e^{-(x+y)}$ over the domain $\Omega=\{(x, y): 0 \leq x, 0 \leq y, x+y \leq z\}$. Solution: Ω can also be described with the inequalities $0 \leq x \leq z, 0 \leq y \leq z-x$. Then

$$
\begin{aligned}
\iint_{\Omega} e^{-(x+y)} d x d y & =\int_{0}^{z} \int_{0}^{z-x} e^{-(x+y)} d y d x \\
& =\left.\int_{x=0}^{z} e^{-x}\left(-e^{-y}\right)\right|_{y=0} ^{z-x} d x \\
& =\int_{x=0}^{z} e^{-x}\left(1-e^{x-z}\right) d x \\
& =\int_{x=0}^{z} e^{-x}-e^{-z} d x \\
& =-e^{-x}-\left.x e^{-z}\right|_{x=0} ^{z}=1-e^{-z}-z e^{-z}
\end{aligned}
$$

Remark 1 The function $f(x, y)=\left\{\begin{array}{ll}e^{-(x+y)} & x \geq 0, y \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$ is a joint probability density function for two independent exponential random variables X, Y with mean 1. The calculation above computes the probability that $X+Y \leq z$. The result is the cumulative distribution function for $Z=X+Y$. The derivative of the result is the probability density function function for Z.
2. Reverse the order of integration and evaluate:

$$
\begin{equation*}
\int_{0}^{\sqrt{\pi / 2}} \int_{y}^{\sqrt{\pi / 2}} \sin \left(x^{2}\right) d x d y \tag{1}
\end{equation*}
$$

Solution The domain of integration is $\{(x, y): 0 \leq y \leq \sqrt{\pi / 2}, y \leq x \leq \sqrt{\pi / 2}\}$. This domain can also be described as $\{(x, y): 0 \leq x \leq \sqrt{\pi / 2}, 0 \leq y \leq x\}$. Thus, reversing the order of integration gives

$$
\begin{aligned}
\int_{x=0}^{\sqrt{\pi / 2}} \int_{y=0}^{x} \sin \left(x^{2}\right) d y d x & =\left.\int_{x=0}^{\sqrt{\pi / 2}} y \sin \left(x^{2}\right)\right|_{y=0} ^{x} d x \\
& =\int_{x=0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x=\int_{u=0}^{\pi / 2} \sin (u) \frac{d u}{2}=\frac{1}{2}
\end{aligned}
$$

3. Integrate $f(x, y)=e^{-\left(x^{2}+y^{2}\right)}$ over the annular region $\ln (2) \leq x^{2}+y^{2} \leq \ln (5)$. Solution In polar coordinates, the integral is

$$
\begin{aligned}
\int_{\theta=0}^{2 \pi} \int_{r=\sqrt{\ln (2)}}^{\sqrt{\ln 5}} e^{-r^{2}} r d r d \theta & =2 \pi \int_{u=\ln (2)}^{\ln (5)} e^{-u} \frac{d u}{2}=\pi\left(e^{-\ln (2)}-e^{-\ln (5)}\right) \\
& =\pi\left(\frac{1}{2}-\frac{1}{5}\right)=\frac{3 \pi}{10}
\end{aligned}
$$

