1. Suppose that f is a function on \mathbb{R} such that $|f(b)-f(a)| \leq M|b-a|^{2}$ for all $a, b \in \mathbb{R}$. Prove that f is a constant function.
2. Define Lipschitz continous.
3. Let U be a convex open set in \mathbb{R}^{2} and let $f: U \rightarrow \mathbb{R}$ be differentiable on U with $\|D f(x, y)\| \leq 5$ for all $(x, y) \in U$. Prove that f is Lipschitz continuous on U.
4. Let $f(x, y)=\int_{0}^{x+2 y} e^{-t^{2}} d t$.
(a) Find $D f(x, y)$
(b) Find the directional derivative of f at $(3,1), D_{\beta} f(3,1)$, where $\beta=(3,4) / 5$.
(c) Find a unit vector β which maximizes $D_{\beta} f(3,1)$, and find the maximum value.
5. Suppose f is a C^{1} function on an open set U in \mathbb{R}^{2}, and $z=f(x, y), D f(x, y)=(p(x, y), T(x, y))$. If $x=g(y, z)$, find $D g(y, z)$. What simple condition on p and/or T is necessary for this computation?
