Math 3334 October 28, 2019

Exam 2 Review

- 1. Suppose that f is a function on \mathbb{R} such that $|f(b) f(a)| \le M |b a|^2$ for all $a, b \in \mathbb{R}$. Prove that f is (20) a constant function.
- 2. Define Lipschitz continous.

(8)

- 3. Let U be a convex open set in \mathbb{R}^2 and let $f: U \to \mathbb{R}$ be differentiable on U with $||Df(x,y)|| \le 5$ for all $(x,y) \in U$. Prove that f is Lipschitz continuous on U. (17)
- 4. Let $f(x,y) = \int_0^{x+2y} e^{-t^2} dt$. (a) Find Df(x,y)

- (10)
- (b) Find the directional derivative of f at (3,1), $D_{\beta}f(3,1)$, where $\beta = (3,4)/5$. (10)
- (c) Find a unit vector β which maximizes $D_{\beta}f(3,1)$, and find the maximum value. (10)
- 5. Suppose f is a C^1 function on an open set U in \mathbb{R}^2 , and z = f(x, y), Df(x, y) = (p(x, y), T(x, y)). If x = g(y, z), find Dg(y, z). What simple condition on p and/or T is necessary for this computation? (25)