1. Suppose that f is a function on \mathbb{R} such that $|f(b)-f(a)| \leq M|b-a|^{2}$ for all $a, b \in \mathbb{R}$. Prove that f is
a constant function.
Solution: $\left|f^{\prime}(x)\right|=\lim _{h \rightarrow 0}\left|\frac{f(x+h)-f(x)}{h}\right| \leq \lim _{h \rightarrow 0}\left|\frac{h^{2}}{h}\right|=0$ for every $x \in \mathbb{R}$. So f is constant.
2. Define Lipschitz continous.

Solution: A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is Lipschitz continuous if there is $K \in \mathbb{R}$ such that

$$
\|f(\mathbf{x})-f(\mathbf{y})\| \leq K\|\mathbf{x}-\mathbf{y}\|
$$

for all $\mathbf{x}, \mathbf{y} \in D$.
3. Let U be a convex open set in \mathbb{R}^{2} and let $f: U \rightarrow \mathbb{R}$ be differentiable on U with $\|D f(x, y)\| \leq 5$ for all $(x, y) \in U$. Prove that f is Lipschitz continuous on U.

Proof. Let p, q be points in U. Since U is convex, the line segment from p to q is contained in U. Then by the Mean Value Theorem there is a point c on this line segment such that $f(q)-f(p)=D f(c)(q-p)=$ $\nabla f(c) \cdot(q-p)$. By the Schwartz inequality,

$$
|f(q)-f(p)| \leq\|\nabla f(c)\|\|q-p\| \leq 5\|q-p\|
$$

Thus, f is Lipschitz continuous on U.
4. Let $f(x, y)=\int_{0}^{x+2 y} e^{-t^{2}} d t$.
(a) Find $D f(x, y)$

Solution: $D f(x, y)(h, k)=e^{-(x+2 y)^{2}}(h+2 k)$.
(b) Find the directional derivative of f at $(3,1), D_{\beta} f(3,1)$, where $\beta=(3,4) / 5$.

Solution: $D_{\beta} f(3,1)=D f(3,1)(\beta)=e^{-(3+2)^{2}}\left(\frac{3}{5}+2 \cdot \frac{4}{5}\right)=e^{-25}\left(\frac{11}{5}\right)$.
(c) Find a unit vector β which maximizes $D_{\beta} f(3,1)$, and find the maximum value.

Solution:

$$
\beta=\frac{\nabla f(3,1)}{\|\nabla f(3,1)\|}=\frac{e^{-25}(1,2)}{\left\|e^{-25}(1,2)\right\|}=\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)
$$

Then, $D_{\beta} f(3,1)=\|\nabla f(3,1)\|=e^{-25} \sqrt{5}$.
5. Suppose f is a C^{1} function on an open set U in \mathbb{R}^{2}, and $z=f(x, y), D f(x, y)=(p(x, y), T(x, y))$. If
$x=g(y, z)$, find $D g(y, z)$. What simple condition on p and/or T is necessary for this computation?
Solution:

$$
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=p(x, y) d x+T(x, y) d y
$$

Then

$$
d x=\frac{1}{p(x, y)} d z-\frac{T(x, y)}{p(x, y)}
$$

So

$$
\nabla G(y, z(x, y))=\left(\frac{1}{p(x, y)}, \frac{T(x, y)}{p(x, y)}\right)
$$

Or,

$$
\nabla G(y, z)=\left(\frac{1}{p(G(y, z), y)}, \frac{T(G(y, z), y)}{p(G(y, z), y)}\right)
$$

To do this we need $p(x, y) \neq 0$.

