\qquad

1. Find a Taylor polynomial with just enough terms to approximate $f(x)=\cos (2 x)$ within 0.01 on $-\frac{1}{2} \leq x \leq \frac{1}{2}$.
2. Use the definition of limit to show that

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(1,2)} 2 x^{2}-3 y^{2}=-10 . \tag{20}
\end{equation*}
$$

3. A smooth function $f(x, y)$ has $\nabla f(2,3)=0$ and second order partial derivatives

$$
\frac{\partial^{2} f}{\partial x^{2}}(2,3)=A, \quad \frac{\partial^{2} f}{\partial x \partial y}(2,3)=4, \quad \frac{\partial^{2} f}{\partial y^{2}}(2,3)=-2 .
$$

For what values of A is $f(2,3)$
(a) A local minimum?
(b) Neither a local minimum nor a local maximum?
(c) A local maximum?
4. Determine whether the equation

$$
\begin{equation*}
x y-y \ln (z)+\sin (x z)=0 \tag{12}
\end{equation*}
$$

(a) has a solution $z=f(x, y)$ for (x, y, z) near $(0,2,1)$. If so, compute $\nabla f(0,2)$.
(b) has a solution $x=g(y, z)$ for (x, y, z) near $(0,2,1)$. If so, compute $\nabla g(2,1)$.
(c) has a solution $y=h(x, z)$ for (x, y, z) near $(0,2,1)$. If so, compute $\nabla h(0,1)$.
5. (a) Let

$$
f(x)= \begin{cases}x \sin (1 / x) . & x \neq 0 \\ 0, & x=0\end{cases}
$$

Prove from the definition that $f(x)$ is not differentiable at $x=0$.
(b) Let

$$
g(x)= \begin{cases}x^{2} \sin (1 / x) . & x \neq 0 \\ 0, & x=0\end{cases}
$$

Prove from the definition that $g(x)$ is differentiable at $x=0$, and find $g^{\prime}(0)$.
6. Let $P=\{(x, y): 0 \leq 2 y-x \leq 4,0 \leq 3 x-y \leq 5\}$. Evaluate

$$
\begin{equation*}
\iint_{P} 2 y-x d x d y \tag{20}
\end{equation*}
$$

Hint: Use a change of variables that transforms P into a rectangle $a \leq u \leq b, c \leq v \leq d$.
7. Evaluate $\int_{-\infty}^{\infty} \frac{e^{x}}{1+e^{2 x}}$.
8. Let $P(x, y), Q(x, y)$ be continuously differentiable on an open rectangle $A \subset \mathbb{R}^{2}$. Suppose

$$
\begin{equation*}
\frac{\partial P}{\partial y}(x, y)=\frac{\partial Q}{\partial x}(x, y) \tag{20}
\end{equation*}
$$

for $(x, y) \in A$. Suppose $(a, b) \in A$ and let

$$
f(x, y)=\int_{a}^{x} P(t, b) d t+\int_{b}^{y} Q(x, t) d t .
$$

Prove that $\frac{\partial f}{\partial x}(x, y)=P(x, y)$ and that $\frac{\partial f}{\partial y}(x, y)=Q(x, y)$.

