Math 3334
FINAL EXAM NAME
May 11, 2005

ID \# \qquad

1. a. Let f be differentiable on R^{2}, and let $g(r, \theta)=f(r \cos (\theta), r \sin (\theta))$.

Find a vector equation of the form $\nabla g=\nabla f \cdot A(r, \theta)$, where $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$, $\nabla g=\left(\frac{\partial g}{\partial r}, \frac{\partial g}{\partial \theta}\right)$, and $A(r, \theta)$ is a 2×2 matrix.

14 pts
b. Use the vector equation found in part a. to find $B(r, \theta)$ such that $\nabla f=\nabla g \cdot B(r, \theta)$. Interpret in terms of the unit vectors $\mathbf{e}_{r}, \mathbf{e}_{\theta}$ in the r and θ directions.

12 pts
2. Use the definition of limit to show that
$\lim _{(x, y) \rightarrow(12)} 2 y^{2}-3 x^{2}=5$. 16 pts
3. Determine whether the solution set of the equation
$x y+\cos (x y z)+z^{2}=3$
has the form:
a. $z=f(x, y)$ near $(1,2,0)$. If so, compute $\nabla f(1,2) \quad 10$ pts
b. $x=g(y, z)$ near $(1,2,0)$. If so, compute $\nabla g(2,0) \quad 10$ pts
c. $y=h(x, z)$ near $(1,2,0)$. If so, compute $\nabla h(1,0) \quad 10$ pts
4. Suppose a and \mathbf{b} are vectors in R^{n} such that:
$\|\mathbf{a}\|=5,\|\mathbf{b}\|=6$
i. Find the range of possible values of $\mathbf{a} \cdot \mathbf{b} \quad 10$ pts
ii. Suppose $\mathbf{a} \cdot \mathbf{b}=3$. Find $\|\mathbf{a}-\mathbf{b}\|$, and $\cos (\theta)$, where θ is the angle between \mathbf{a} and b.

16 pts
5. Let $f: A \rightarrow R$ be continuous on a bounded open region $A \subset R^{n}$. Prove that if $\int_{A}|f| d V=0$, then $f(x)=0$ for all $x \in A$. 16 pts 6. Change the order of integration, and evaluate:

14 pts
a. $\int_{0}^{2} \int_{y / 2}^{1}(x+y)^{2} d x d y$
b. $\int_{0}^{\pi / 2} \int_{0}^{\sin (x)} \cos (x) d y d x$

14 pts
7. Let $x(t)$ denote the position of an object in \mathfrak{R}^{3} at time t. Suppose that the speed $\left\|x^{\prime}(t)\right\|$ is constant and non-zero. Prove that the acceleration $x^{*}(t)$ is always orthogonal to the velocity.

14 pts
8. Determine which of the following vector fields is the gradient of a function $f(x, y)$. If it is, find all such functions $f(x, y)$. 24 pts
a. $\quad \mathbf{V}(x, y)=\left(3 x y^{2}+3 y\right) \mathbf{i}+\left(x^{3}+x y^{2}-7 y\right) \mathbf{j}$
b. $\quad \mathbf{W}(x, y)=\left(3 x^{2} y+y^{3}\right) \mathbf{i}+\left(x^{3}+3 x y^{2}+6 y\right) \mathbf{j}$

