Math 3334FINAL EXAMNAMEMay 11, 2005ID #1. a. Let f be differentiable on \mathbb{R}^2 , and let $g(r,\theta) = f(r\cos(\theta), r\sin(\theta))$.Find a vector equation of the form $\nabla g = \nabla f \cdot A(r,\theta)$, where $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$, $\nabla g = \left(\frac{\partial g}{\partial r}, \frac{\partial g}{\partial \theta}\right)$, and $A(r,\theta)$ is a 2x2 matrix.14 pts

b. Use the vector equation found in part a. to find $B(r,\theta)$ such that $\nabla f = \nabla g \cdot B(r,\theta)$. Interpret in terms of the unit vectors \mathbf{e}_r , \mathbf{e}_{θ} in

12 pts

2. Use the definition of limit to show that $\lim_{(x,y)\to(1,2)} 2y^2 - 3x^2 = 5.$ 16 pts

3. Determine whether the solution set of the equation xy + cos(xyz) + z² = 3 has the form:
a. z = f(x,y) near (1,2,0). If so, compute ∇f(1,2) 10 pts
b. x = g(y,z) near (1,2,0). If so, compute ∇g(2,0) 10 pts
c. y = h(x,z) near (1,2,0). If so, compute ∇h(1,0) 10 pts
4. Suppose a and b are vectors in Rⁿ such that:

 $\|\mathbf{a}\| = 5, \|\mathbf{b}\| = 6$

the r and θ directions.

i. Find the range of possible values of **a b** 10 pts

ii. Suppose $\mathbf{a} \cdot \mathbf{b} = 3$. Find $\|\mathbf{a} - \mathbf{b}\|$, and $\cos(\theta)$, where θ is the angle between \mathbf{a} and \mathbf{b} .

5. Let $f: A \to R$ be continuous on a bounded open region $A \subset R^*$. Prove that if $\int_{A} |f| \, dV = 0$, then f(x) = 0 for all $x \in A$. 16 pts 6. Change the order of integration, and evaluate: 14 pts a. $\int_{0}^{2} \int_{-\pi^{2}}^{1} (x+y)^{2} \, dx \, dy$

b.
$$\int_0^{\pi/2} \int_0^{\sin(x)} \cos(x) dy dx$$
 14 pts

FINAL EXAM NAME_ 2

7. Let x(t) denote the position of an object in \Re^3 at time t. Suppose that the speed $\|x'(t)\|$ is constant and non-zero. Prove that the acceleration x''(t) is always orthogonal to the velocity.

14 pts

8. Determine which of the following vector fields is the gradient of a function f(x,y). If it is, find all such functions f(x,y). 24 pts

a.
$$V(x,y) = (3xy^2 + 3y)i + (x^3 + xy^2 - 7y)j$$

MATH 3334

b.
$$W(x,y) = (3x^2y + y^3)i + (x^3 + 3xy^2 + 6y)j$$