\qquad

1. Which of the following functions, when extended as 2π periodic functions, are equal to their Fourier series (for all x)? (Hint: DO NOT compute Fourier coefficients).
a. $f(x)=\sin (x / 2),-\pi<x \leq \pi \quad$ No 6 pts
b. $f(x)=\sin (x),-\pi<x \leq \pi \quad$ Yes 6 pts
c. $f(x)=\cos (x),-\pi<x \leq \pi \quad$ Yes 6 pts
d. $f(x)=\cos (x / 2),-\pi<x \leq \pi \quad$ Yes 6 pts
e. $\quad f(x)=\pi-x \quad-\pi<\mathrm{x} \leq \pi \quad \mathrm{No} \quad 4 \mathrm{pts}$
f. $\quad f(x)=1-|x|,-\pi<\mathrm{x} \leq \pi$ Yes 4 pts
g. $f(x)=\left\{\begin{aligned} \pi-x, & 0<x \leq \pi \\ -x-\pi, & -\pi<x \leq 0\end{aligned}\right.$, No $\quad 8$ pts
h. $\quad f(x)=\left\{\begin{array}{cl}x-\pi / 2, & \pi / 2<x \leq \pi \\ \frac{1}{3}(\pi / 2-x), & -\pi<x \leq \pi / 2\end{array}, \quad\right.$ Yes
2. If $f(x)=e^{-|x|}$, find the Fourier transform of f . Show your work! See textbook 20 pts
3. a. Let $f(x)=e^{-4 x^{2}}$. Note that $f^{\prime}(x)=-8 x f(x)$. Use this and the fact that
$\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$, to derive the Fourier Transform of f. See textbook
b. If $f(x)=e^{-3(x+2)^{2}}$, find the Fourier transform of f using the attached table. 20 pts
$\hat{f}(\omega)=\frac{1}{\sqrt{12 \pi}} e^{-i 2 \omega} e^{-\omega^{2} / 12}$
4. A steel rod is removed from an oven at $t=0$ with a temperature of 1200 . The left end ($x=0$) is put in an ice bath, the length of the rod and the right end $(x=\pi)$ are insulated. The temperature $u(x, t)$ satisfies:

$$
\frac{\partial u}{\partial t}=7 \frac{\partial^{2} u}{\partial x^{2}}, u(0, t)=0, \frac{\partial \mathrm{u}}{\partial \mathrm{x}}(\pi, t)=0, u(x, 0)=1200
$$

Estimate the maximum temperature of the rod when $\mathrm{t}=8$.

$$
\begin{aligned}
& \max _{0<x<\pi} u(x, 8)=u(\pi, 8) \cong \text { value of first term at }(\pi, 8) \\
& =\frac{4800}{\pi} e^{-14}
\end{aligned}
$$

\qquad
5. Suppose Ω is a bounded domain in the xy plane, and the solutions of

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\lambda u=0, \quad u(x, y)=0 \text { if }(x, y) \text { is in the boundary of } \Omega,
$$

are $(\lambda, u(x, y))=\left(\lambda_{n}, \phi_{n}(x, y)\right)$, with $0<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\ldots$.
You have determined that $\lambda_{1}=5$ and $\lambda_{2}=8$.
a. Find the special solutions of:

$$
\frac{\partial^{2} u}{\partial t^{2}}=9\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right),(x, y) \in \Omega, 0<t
$$

with homogeneous Dirichlet boundary conditions, which correspond to λ_{1} and λ_{2}. If t is measured in seconds, what is the frequency of vibration for these special solutions?
$u_{1}(x, y, t)=\phi_{1}(x, y)\left(A_{1} \cos (3 \sqrt{5} t)+B_{1} \sin (3 \sqrt{5} t)\right), u_{2}(x, y, t)=\phi_{2}(x, y)\left(A_{2} \cos (3 \sqrt{8} t)+B_{2} \sin (3 \sqrt{8} t)\right)$
Frequencies $\omega_{1}=\frac{3 \sqrt{5}}{2 \pi}, \omega_{2}=\frac{3 \sqrt{8}}{2 \pi}$
6. A round flat plate of radius 3 is insulated on its surfaces and has an equilibrium heat distribution $u(r, \theta)$. You are able to measure the temperature only on the boundary. You have found that $u(3, \theta)=2-|\theta|,-\pi \leq \theta<\pi$.
a. What is the temperature at the center?
$=$ average of temperature on rim $=2-\frac{\pi}{2}$
b. What is the maximum temperature on the plate?
$=$ maximum temperature on rim $=2$.
7. Find the solution to the Laplace equation in polar coordinates:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0, \mathrm{r}<5,0<\theta^{\prime \prime} 2 \pi .
$$

with boundary condition:

$$
u(5, \theta)=\cos (3 \theta), 0<\theta \leq 2 \pi .
$$

(Reminder: to solve $a r^{2} \phi^{\prime \prime}(r)+b r \phi^{\prime}(r)+c \phi(r)=0$, try $\phi=r^{\alpha}$).

$$
u(r, \theta)=\left(\frac{r}{5}\right)^{3} \cos (3 \theta)
$$

\qquad
8. Which of the following eigenvalue problems have only positive eigenvalues λ ?
a. $\quad \varphi^{\prime \prime}+3 \lambda \phi+\phi=0, \quad \phi(0)=\phi(2)=0$
$\lambda_{1}=\frac{1}{3}\left(\left(\frac{\pi}{2}\right)^{2}-1\right)>0$. All eigenvalues λ are positive.
b. $\quad \varphi^{\prime \prime}+3 \lambda \phi+\phi=0, \quad \phi(0)=\phi(4)=0$

10 pts
$\lambda_{1}=\frac{1}{3}\left(\left(\frac{\pi}{4}\right)^{2}-1\right)<0$. One eigenvalue λ is negative.
9. Consider the differential equation:
$r^{2} \frac{d^{2} f}{d r^{2}}+r \frac{d f}{d r}+\left(\lambda r^{2}-m^{2}\right) f=0$
If we couple this equation with boundary conditions:
$\mathrm{f}(5)=0$, and f is bounded as $z \rightarrow 0$,
the combined problem has a sequence of eigenfunctions $f_{n}(r)$ with eigenvalues λ_{n}, $\mathrm{n}=1,2,3, \ldots$
a. How many zeros does the nth eigenfunction have, strictly between 0 and 5?
n-1
b. What equation do the eigenvalues satisfy?
$J_{m}\left(\sqrt{\lambda_{m n}} 5\right)=0$, or $\lambda_{m n}=\left(\frac{z_{m n}}{5}\right)^{2}$, where z_{mn} is the $\mathrm{n}^{\text {th }}$ positive zero of the Bessel function J_{m}.
c. What is the orthogonality relation is satisfied by the eigenfunctions?

$$
\int_{0}^{5} f_{j}(r) f_{k}(r) r d r=0 \text { if } j \neq k
$$

\qquad
10. A certain non-isotropic material has a heat conductivity in the y direction that is 4 times the heat conductivity in the x direction, so that the equation for heat conduction is:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial y^{2}}-\infty<x<\infty, 0 \leq y<\infty
$$

At equilibrium we measure the temperature distribution along the x -axis to be:

$$
u(x, 0)=e^{-5 x^{2}}, \quad-\infty<x<\infty .
$$

Find the equilibrium heat distribution in the half plane $.-\infty<x<\infty, 0 \leq y<\infty \quad\left(\frac{\partial u}{\partial t}=0\right)$
$u(x, y)=\frac{2 y}{\pi} \int_{-\infty}^{\infty} e^{-5 \bar{x}^{2}} \frac{1}{4(x-\bar{x})^{2}+y^{2}} d \bar{x}$
11. A uranium rod of length π is initially at $0^{\circ} \mathrm{C}$. The ends of the rod sit in ice baths at $0^{\circ} \mathrm{C}$. Nuclear fission adds heat to the rod in a uniform manner, so that the temperature of the rod, $u(x, t)$, satisfies:

$$
\frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}}+1, \quad u(0, t)=\mathrm{u}(\pi, t)=0, \quad u(x, 0)=0
$$

a. Find an equilibrium temperature distribution $\mathrm{v}(\mathrm{x})$ for this problem.

$$
v(x)=\frac{\pi x-x^{2}}{6}
$$

b. Use $\mathrm{v}(\mathrm{x})$ to transform the problem into one with a homogeneous PDE.

New unknown w, in terms of u and $v: w=u-v$
PDE for $\mathrm{w}: \frac{\partial w}{\partial t}=3 \frac{\partial^{2} w}{\partial x^{2}}$
Initial Condition: $w(x, 0)=-v(x)=\frac{x^{2}-\pi x}{6}$
Boundary Conditions: $w(0, t)=w(\pi, t)=0$
c. Solve the transformed problem in (b). Do not solve for the Fourier coefficients, just show the formula. Use the result to solve the original problem.
$w(x, t)=\sum_{n=1}^{\infty} B_{n} \sin (n x) e^{-9 n^{2} t}, B_{n}=\frac{2}{\pi} \int_{0}^{\pi} \frac{x^{2}-\pi x}{6} \sin (n x) d x, u(x, t)=w(x, t)+\frac{\pi x-x^{2}}{6}$
\qquad
12. Consider a rectangular metal plate, with coordinates $0<x<2,0<y<3$. The temperature distribution $u(x, y, t)$ of the plate obeys:

$$
\frac{\partial u}{\partial t}=5\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right), \quad \frac{\partial u}{\partial x}(x, y, t)=0 \text { if } \mathrm{x}=0 \text { or } 2, \mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{t})=0 \text { if } \mathrm{y}=0 \text { or } 3 .
$$

a. Find the smallest eigenvalue λ_{1} of the problem: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\lambda u=0,(x, y) \in \Omega$,
with boundary conditions $\frac{\partial u}{\partial x}(x, y)=0$ if $\mathrm{x}=0$ or $2, \mathrm{u}(\mathrm{x}, \mathrm{y})=0$ if $\mathrm{y}=0$ or 3 , where Ω is the rectangle $0<x<2,0<y<3$.

15 pts
$\lambda_{1}=\frac{\pi^{2}}{9}$ corresponding to $u(x, y)=1 * \sin \left(\frac{\pi y}{3}\right)$
b. Find a solution to the heat equation above, corresponding to λ_{1}. What is the ratio $\left(\max _{(x, y) \in \Omega} u(x, y, 0)\right) /\left(\max _{(x, y) \in \Omega} u(x, y, \ln 2)\right)$ for this solution?

15 pts
$u(x, y, t)=\sin \left(\frac{\pi y}{3}\right) e^{-\frac{5 \pi^{2} t}{9}}$. Ratio is $2^{\frac{5 \pi^{2}}{9}}$.
13. Solve the circularly symmetric heat equation:
$\frac{\partial u}{\partial t}=\frac{2}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right), 0<r<3,0<t, u(r=3, t)=0$, with the initial condition
$u(r, 0)=3-r, 0<r \leq 3$.
a. $\quad u(r, t)=\sum_{n=1}^{\infty} A_{n} T_{n}(t) \phi_{n}(r)$

Identify the eigenfunctions $\phi_{n}(r)$, the eigenvalues λ_{n}, and the functions $T_{n}(t)$.
$\phi_{n}(r)=J_{0 n}\left(\sqrt{\lambda_{0 n}} r\right)$, $\lambda_{0 n}$ satisfy $J_{0 n}\left(\sqrt{\lambda_{0 n}} 3\right)=0, T_{n}(t)=e^{-2 \lambda_{0 n} t}$.
b. Give an equation for A_{n} in terms of ϕ_{n}.
$A_{n}=\int_{0}^{3}(3-r) \phi_{n}(r) r d r / \int_{0}^{3} \phi_{n}(r)^{2} r d r$
c. What is the orthogonality relation between ϕ_{n} and ϕ_{j} ?

$$
\int_{0}^{3} \phi_{n}(r) \phi_{j}(r) r d r=0 \text { if } \mathrm{n} \neq \mathrm{j} .
$$

\qquad
Review sheet answers
14. a. Find a Green's function $\mathrm{G}(\mathrm{x}, \mathrm{s})$ for the problem: $u^{\prime \prime}(x)=f(x), 0<x<1, u(0)=u^{\prime}(1)=0$.

$$
G(x, s)= \begin{cases}-x & x<s \\ -s & x \geq s\end{cases}
$$

b. Express the solution to: $u^{\prime \prime}(x)=f(x), 0<x<1, u(0)=u^{\prime}(1)=0$
in terms of the Green's function found in part a. Verify that the solution solves the differential equation and boundary conditions.
$u(x)=\int_{0}^{1} f(s) G(x, s) d s=\int_{0}^{x} f(s)(-s) d s+\int_{x}^{1} f(s)(-x) d s$
Then $u(0)=\int_{0}^{1} f(s)(0) d s=0, u^{\prime}(x)=-x f(x)+x f(x)-\int_{x}^{1} f(s) d s, u^{\prime}(1)=-\int_{1}^{1} f(s) d s=0$, and $u "(x)=-\frac{d}{d x} \int_{x}^{1} f(s) d s=f(x)$.
15. Solve the diffusion equation with convection:

$$
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}+c \frac{\partial u}{\partial x}, \quad-\infty<x<\infty, \quad u(x, 0)=f(x)
$$

Hint: Take the Fourier transform with respect to x . Use the convolution theorem and the
shift theorem.
$u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} f(\bar{x}) e^{-(x+c t-\bar{x})^{2} / 4 k t} d \bar{x}$
16. A fuel line on a fuel-injected car engine is subject to vibrations from the engine. The displacement $u(x, t)$ from its undisturbed configuration satisfies:

$$
\frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}=\sin (\omega t) \sin (x), 0<x<\pi, u(0, t)=u(\pi, t)=0 .
$$

Assume $u(x, 0)=\frac{\partial u}{\partial t}(x, 0)=0$.
a. If $u(x, t)=\sum_{n=1}^{\infty} B_{n}(t) \phi_{n}(x)$, what are the eigenfunctions $\phi_{n}(x)$ and the eigenvalues λ_{n} ? $\phi_{n}(x)=\sin (n x), \quad \lambda_{n}=n^{2}$
\qquad
b. What differential equations and initial conditions are satisfied by $B_{n}(t)$?

$$
B_{n}^{\prime \prime}(t)+4 n^{2} B_{n}(t)=\left\{\begin{array}{cc}
\sin (\omega t) & n=1 \\
0 & n \neq 1
\end{array}, \quad B_{n}(0)=B^{\prime}(0)=0\right.
$$

c. Solve for $B_{n}(t)$. For what positive value of ω does the solution blow up? 14 pts

$$
B_{1}(t)=\left\{\begin{array}{cl}
\frac{1}{4-\omega^{2}}\left(\sin (\omega t)-\frac{\omega}{2} \sin (2 t)\right), & \omega \neq 2 \\
\frac{1}{8}(\sin (2 t)-2 t \cos (2 t)) & \omega=2
\end{array} \quad B_{n}(t)=0, n \neq 1 . \text { Blows up for } \omega=2 .\right.
$$

