MATH 4335
NOTES ON ANALYSIS FOR PARTIAL DIFFERENTIAL EQUATIONS

DAVID H. WAGNER

1. INTRODUCTION: SERIES OF FUNCTIONS

In the study of partial differential equations, we often deal with series of functions:

f@) =Y falx), a<z<b.

It is important to understand whether and in what way a particular series converges.
Usually this involves measuring the distance between functions using a norm: || f — ¢||.
There are many norms that mathematicians use, but the ones that we use most fre-
quently in Math 4335 are:

1

(1) The L? norm, (fab |f ()] d;t:) g
(2) The “sup” or L> norm, ||f|,, = sup,<,<, |f(z)|. Here “sup” is short for “supre-
mum” and really means the least upper bound, which is what we use when a
function does not actually attain a maximum value. A sequence of functions that

converges in the “sup” norm converges uniformly:.

A normed vector space is a vector space V' with a norm on V, ||||. The properties of

a 1norm are:

(1) The norm maps elements of V' to the non-negative real numbers (even for a
complex vector space).

(2) For any v € V, and any t € R, |[tv|| = || ||v]].

(3) For any u, v € V, |lu+v| < ||ul]| + ||v] (the triangle inequality).

(4) |lv]] =0 = v=0.

Remark. Technically, the L? norm satisfies || f|], =0 = f(z) = 0 for “almost all” z;
a function like this is considered to be the same as the zero function.
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Definition 1. A sequence {z,} -, in a normed vector space V is called a Cauchy

sequence if for every € > 0 there is N < oo such that for all n, m > N, ||z, — x| <e.

Definition 2. A normed vector space V' is said to be complete if every Cauchy sequence
in V' converges to some x € V. A complete normed vector space is called a Banach
space.

This notion is important because it says that every sequence that ought to converge
actually has an element of V' to which it converges. Any useful normed vector space is
complete.

Here is a simple test for convergence that generalizes the notion of absolute conver-

gence of infinite series of numbers:

Theorem 1.1. Let V' be a Banach space and let {z,},_ | be a sequence in V. If

00
D ] =7 < o,
n=1

then there is x € V such that

N
]\}51(1)0 Zla:n —z|| = 0.
Proof. Let Sy = 27]:;1 Z,. For M > N,
M 00
1S =Sl = D =l < D llaall
n=N+1 n=N-+1

But > v |2al =7 — SN |||l and tends to 0 as N — co. Thus the sequence Sy
is Cauchy. Since V' is complete, there is © € V such that ||Sy —z|| = 0as N — co. O

Remark. When the norm in Theorem 1.1 is |||, the theorem is called the Weierstrass
M-test.

Ezample 1. Consider the sine series Y " | = sin(na) on [0, 27]. Since || sin n.:z:HOO ==

and >, # < 00, this series converges uniformly by Theorem 1.1.

Ezample 2. Theorem 1.1 does not work so well for L? convergence. Now consider the
sine series Y | L sin(nx) on [0, 27]. When we apply the test with ||| we get Y07 & =
oo and in fact this series does not converge uniformly. If we apply the test with |||,
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we get > 2 T = co. However this series converges in L? [0, 7], because if Sy(z) =

> nt y sin(nz),
Ny 3
IS — Sull, = ( > o ||sm<m>||§)

n=M+1
v : :
1x > 17\°
:(Z m) §<Z m)
n=M+1 n=M+1

by the Parseval identity. Since >~ # converges (to %2),

1 1
17\’ 7w [ m? M 1\’
Z ﬁ? = § F—erﬁ —0as M — oo.
n=M+1 n=1

Thus, as in the proof of Theorem 1.1, the partial sums Sy (z) are a Cauchy sequence in
L*]0, 7] and hence converge to a function in L? [0, 27].

We have seen that a piecewise continuous function f on —L < x < L can be repre-

sented by a Fourier series:

flz) =2+ i (A cos (nzx) + By, sin <nzx>> ,

where the equals sign holds when f is continuous at z, and does not hold when f is

discontinuous at x. Using the L? inner product of functions on [—L, L]:

(f.g) = / f(2)g(z) da

we find that the set of functions {1 cos ("z‘”) , sin (”Z‘”) ,n=1, 2 3, .. } is orthogo-

nal. Consequently we can use the standard formula for the orthogonal projection of one
vector onto another to determine the coefficients A,, and B,,:

(f,cos ("”)) B f,sm(””))

n n

nﬂ':c H

I
leos (*F s ()5

Here the norm of a function is the L? norm on [—L, L]:

VFIE = (f. ) = / @) de.

~L
It is natural to develop the theory of Fourier series in terms of the L? inner product and
norm. The expansion of f as an infinite series of orthogonal functions is like writing
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the hypotenuse of a right triangle as a vector sum of the perpendicular sides— the only
difference is that a Fourier series has infinitely many orthogonal pieces. For example,
the Pythagorean theorem c? = a? + b? generalizes to the Parseval identity:

U= 1A 3 (e () [+ s (1)
n=1

12) SLgery ().
n=1

Naturally, if we only use finitely many of the orthogonal pieces, we get an inequality,

called Bessel’s inequality:

N
L 2
ALY (A +BY) < 13-
n=1
Now I want to discuss how derivatives work with Fourier series. First, we need to think

about derivatives in terms of functions. We say that g is the derivative of f, if

(1.3) f(x)—f(()):/oxg(t) it and /_ ()] dt < oo.

L

We say that f has an L? derivative if (1.3) holds and ||g||, < cc. Using this notion, we
can say that the derivative of the absolute value function is the step function

-1 —-L<x<0

g(x) =
1 O<x< L.

Note that the value of ¢g(0) does not matter, and in fact the absolute value function has
no derivative at 0.

A function f that has a derivative function g as in (1.3) is said to be absolutely
continuous.

A function f for which ||f]|, < oo is said to be in L*[—L, L]. If f € L*[—L, L] and
'€ L*[-L, L], we say that f € H'[-L,L]. H' is called a Sobolev space, and much of
the theory of partial differential equations is done in the context of one or more Sobolev
spaces.

Theorem 1.2. If f € H' [-L, L], then for all z, y € [-L, L],

1f () = F@) < 1 lly vy — =l
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Proof.

[f(y) = f(@)] =

- <

/ 1 f'(s)ds / 2ds| |1y = 1711, /Ty — 2.

by the Schwartz inequality. O

The next theorem is a special case of the Sobolev embedding theorem.

Theorem 1.3. If f € H' [-L, L] and f has period 2L, then:

(1) The derivative function of f, f', has a Fourier series which converges to f' in
L?[-L, L.

(2) The Fourier series for f converges uniformly to f.

(3) The Fourier series for f' can be computed by differentiating the Fourier series
for f term-by-term.

Proof. The first statement follows from the assumption that f is in L?. For the second
statement, first let us calculate the Fourier coefficients of f’. We seek to find coefficients
ao and a,, b,, n=1, 2,3,..., such that

3 e () e ().
Since f has period 2L,

I 1
-1 | f@de=LGm - f-1) =0

Note how this has used (1.3). Next,

(1.4) / f'(x) cos mrx) dx

1
(1.5) = —f(:L‘) cos <@> - —E/ f(z sm mr ) dx
L L r=—1L
nmw
1.6 =0— —B8B,.
(1.6) 7
Thus a, = —*F B, and similarly b, = “FA,. This is exactly what we obtain from

differentiating the series for f term-by-term. Now to prove the second statement. The
key to making this valid is the convergence of the resulting series to f’. However, as noted
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before, when f' € L?[—L, L] this convergence is guaranteed by the L? (mean-square)

convergence of Fourier series for functions in L?. Thus, when we apply Parseval’s identity

to f', we get:

L

175 =3
n=1

= Z (nm)? (A2 + B2)

n=1

b,, sin (?)

)

Thus, by the Schwartz inequatliy,
oo o 1
n=1 n=1

1 1
“(53) (Eweon) <

Consequently, the Fourier series for f converges uniformly.

O
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