UNIVERSITY OF HOUSTON DEPARTMENT OF MATHEMATICS

Seminar on Partial Differential Equations

Jeff Morgan

University of Houston

Analysis of Reaction Diffusion Systems with Mass Transport Boundary Conditions

3:00 pm in 646 PGH May 6, 2011

Abstract

We are interested in reaction-diffusion systems in which some of the components react and diffuse in a smooth bounded 3 dimensional domain, and interact with other components that react and diffuse on the boundary of the domain. The simplest structure for a model of this type involves mass transport boundary conditions, and has the form:

$u_{t}=d_{1}\Delta u+h\left(u\right) ,$	$\Omega imes(0,\infty)$
$rac{\partial u}{\partial \eta}=g\left(u, u ight) ,$	$\Gamma imes (0,\infty)$
$\nu_t = d_2 \Delta_{\Gamma} \nu + f\left(u, \nu\right),$	$\Gamma imes (0,\infty)$
$u = u_0 \text{ on } \Omega \times \{0\},\$	$\nu = \nu_0 \text{ on } \partial\Omega \times \{0\}.$

Here Ω is a smooth bounded domain in \mathbb{R}^3 with boundary Γ , d_1 , $d_2 > 0$ are diffusion coefficients, η is the unit outward normal to Ω at each point on the boundary, Δ_{Γ} is the Laplace Beltrami operator, u_0 and ν_0 are bounded and nonnegative, and f, g, and h are smooth functions satisfying f(z,0), g(z,0), $h(0) \ge 0$ for all $z \ge 0$. Natural assumptions on f, g, and h lead to global existence and uniform bounds for solutions. Our analysis is applied to a mathematical model associated with the positioning of the FtsZ contractile ring by a min-dependent mechanism during the cell division process. Open mathematical questions are also discussed.

This is joint work with Paul Lindahl at Texas A&M University, and Zhigang Zhang and Vandana Sharma at UH, supported by NSF DMS-0714864 and 0714896.

Persons with disabilities who desire accommodations, should contact the Math Department at: 713-743-3500