
Abstract

The main goal of this lecture is to discuss the numerical solution of the following inverse problem (from Geophysics) for the Eikonal equation:

$$
\text { (IP-E) }\left\{\begin{array}{l}
\text { Find } c_{\text {opt }} \in \mathscr{C}, \text { such that } \\
J\left(c_{\text {opt }}\right) \leq J(c), \forall c \in \mathscr{C},
\end{array}\right.
$$

where

$$
\begin{gathered}
\mathscr{C}=\left\{c \mid c \in L^{\infty}(\Omega), 0<c_{\min } \leq c \leq c_{\max }\right\}, \\
J(c)=\frac{1}{2} \int_{\Gamma}\left|z-y_{\text {meas }}\right|^{2} d \Gamma,
\end{gathered}
$$

z (the time of first arrival) being the solution of the following Eikonal problem

$$
\left\{\begin{array}{l}
|\nabla z|=\frac{1}{c} \text { in } \Omega \\
z \geq 0, \\
z\left(x_{s}\right)=0
\end{array}\right.
$$

Above, $\Omega \subset \mathbf{R}^{d}(d \geq 2), \Gamma \subset \bar{\Omega}, x_{s} \in \bar{\Omega}$ being the point source of the wave, In practice, several sources are used to reconstruct c_{opt}.

In order to solve the above inverse problem, we advocate a methodology combining external penalty, harmonic and bi-harmonic regularizations, operator-splitting to decouple nonlinearities and differential operators, and finite element methods. The results of some numerical experiments will be presented.

