MATH 2331 - 17571

Vladimir Yushutin
yushutin@math.uh.edu
Office: PGH 606
Lecture: TuTh 1:00PM-2:30PM in SEC 203
Office hours: TuTh 2.30PM-4PM and BY APPOINTMENT
Questions

- Can a linear system of 4 equations and only 3 unknowns have a unique solution?

- Suppose the coefficient matrix corresponding to a linear system is 4×6 and has 3 pivot columns. How many pivot columns does the augmented matrix have if the linear system is inconsistent?
Vector equations

Section 1.3
Vectors in \mathbb{R}^n

Vectors with n entries: $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$, a matrix with one column.

Geometric description of \mathbb{R}^2

Vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is depicted as the arrow connecting the origin of the axes $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ to the point (x_1, x_2) in the plane.

\mathbb{R}^2 is the set of all points in the plane.
Operations with vectors

Sum
Given vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, vector $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$ is:

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

Multiplication by scalar
Given vectors $\mathbf{u} \in \mathbb{R}^n$, and scalar $c \in \mathbb{R}$ is:

$$c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ \vdots \\ cu_n \end{bmatrix}$$
Parallelogram rule

If \(\mathbf{u} \) and \(\mathbf{v} \) in \(\mathbb{R}^2 \) are represented as arrows to points in the plane, then \(\mathbf{u} + \mathbf{v} \) corresponds to the diagonal of the parallelogram with \(\mathbf{u} \) and \(\mathbf{v} \) as two sides.

Example: Let \(\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \) and \(\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \). \(\mathbf{u} + \mathbf{v} \) is:
Linear combinations of vectors

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \ldots, c_p in \mathbb{R}, the vector \mathbf{y} defined by

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p$$

is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ using weights c_1, c_2, \ldots, c_p.

Example:
Linear combinations and vector equation

Vector Equation

A vector equation

\[x_1a_1 + x_2a_2 + \cdots + x_na_n = b \]

has the same solution set as the linear system whose augmented matrix is

\[
\begin{bmatrix}
 a_1 & a_2 & \cdots & a_n & b
\end{bmatrix}.
\]

In particular, \(b \) is a linear combination of \(a_1, a_2, \ldots, a_n \) if and only if there is a solution to the linear system corresponding to the augmented matrix.
Span of a set of vectors

\[\text{Span}\{u\} \text{ is the set of all vectors of the form } cu. \]

Let \(u = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \). We have seen that \(u, 2u, \) and \(-u \) lie on the same line. In general, all vectors of the form \(cu \) lie on the same line.

\[\rightarrow \text{Span}\{u\} \text{ is a line through the origin. We say } u \text{ spans } \mathbb{R}. \]
Span of a set of vectors

Span\{u, v\} is the set of all vectors of the form \(x_1u + x_2v\).

Let \(u = \begin{bmatrix} 1 \\ 3 \end{bmatrix}\) and \(v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}\). We have seen that \(u\), \(v\), and \(u + v\) lie on the same plane. In general, all vectors of the form \(x_1u + x_2v\) lie on the same plane.

→ Span\{u, v\} = a plane through the origin if \(v\) is NOT a multiple of \(u\). In this case we say \(u, v\) span \(\mathbb{R}^2\).

What is Span\{u, v\} if \(v\) is a multiple of \(u\)?
Span of a Set of Vectors: Definition

Span of a Set of Vectors

Suppose \(v_1, v_2, \ldots, v_p \) are in \(\mathbb{R}^n \); then

\[
\text{Span}\{v_1, v_2, \ldots, v_p\} = \text{set of all linear combinations of } v_1, v_2, \ldots, v_p.
\]

This means that \(\text{Span}\{v_1, v_2, \ldots, v_p\} \) is the collection of all vectors that can be written as

\[
x_1 v_1 + x_2 v_2 + \cdots + x_p v_p
\]

where \(x_1, x_2, \ldots, x_p \) are scalars.
Example

Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$ and $b = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$. Is b in the span of the columns of A?
The Matrix Equation $Ax = b$

Section 1.4
Key concept: linear combinations can be viewed as a matrix-vector multiplication.

Matrix-Vector Multiplication

If A is an $m \times n$ matrix, with columns a_1, a_2, \ldots, a_n, and if x is in \mathbb{R}^n, then the product of A and x, denoted by Ax, is the linear combination of the columns of A using the corresponding entries in x as weights:

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$$
Example

Given:

\[A = \begin{bmatrix} 1 & -4 \\ 3 & 2 \\ 0 & 5 \end{bmatrix}, \quad x = \begin{bmatrix} 7 \\ -6 \end{bmatrix} \]

find \(Ax \). Verify your answer with Matlab.
Matlab exercise

Given:

\[B = \begin{bmatrix} 1 & -4 & 2 \\ -3 & 1 & 5 \end{bmatrix}, \quad x = \begin{bmatrix} -5 \\ 2 \end{bmatrix}, \]

find \(Bx \) with Matlab.
Example

Write down the system of equations corresponding to the augmented matrix:

\[
\begin{bmatrix}
2 & 3 & 4 & 9 \\
-3 & 1 & 0 & -2 \\
\end{bmatrix}
\]

Then express the system of equations in vector form and finally in the form \(Ax = b \).
Example (cont.)
Matrix Equation

Three Equivalent Ways

2. Vector equation $x_1 a_1 + x_2 a_2 + \cdots + x_n a_n = b$.
3. Matrix equation $Ax = b$.
Matrix Equation: Theorem

Theorem

If A is a $m \times n$ matrix, with columns a_1, \ldots, a_n, and if b is in \mathbb{R}^m, then the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix}.$$

Note

The equation $Ax = b$ has a solution if and only if b is a linear combination of the columns of A.