MATH 2331 - 20947

Vladimir Yushutin
yushutin@math.uh.edu
Office : PGH 606
Lecture : MoWeFr 10:00AM-11:00AM in CBB 104
Office hours : Fr 3:00PM-4:00PM and BY APPOINTMENT
Vector equations

Section 1.3
Vector

Vectors in \mathbb{R}^n

Vectors with n entries: $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$, a matrix with one column.

Geometric description of \mathbb{R}^2

Vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is depicted as the arrow connecting the origin of the axes $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ to the point (x_1, x_2) in the plane.

\mathbb{R}^2 is the set of all points in the plane.
Operations with vectors

Sum

Given vectors \(u, v \in \mathbb{R}^n \), vector \(u + v \in \mathbb{R}^n \) is:

\[
\begin{bmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{bmatrix} +
\begin{bmatrix}
v_1 \\
v_2 \\
\vdots \\
v_n
\end{bmatrix} =
\begin{bmatrix}
u_1 + v_1 \\
u_2 + v_2 \\
\vdots \\
u_n + v_n
\end{bmatrix}
\]

Multiplication by scalar

Given vectors \(u \in \mathbb{R}^n \), and scalar \(c \in \mathbb{R} \) is:

\[
cu = c
\begin{bmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{bmatrix} =
\begin{bmatrix}
cu_1 \\
cu_2 \\
\vdots \\
cu_n
\end{bmatrix}
\]
Parallelogram rule

If \(\mathbf{u} \) and \(\mathbf{v} \) in \(\mathbb{R}^2 \) are represented as arrows to points in the plane, then \(\mathbf{u} + \mathbf{v} \) corresponds to the diagonal of the parallelogram with \(\mathbf{u} \) and \(\mathbf{v} \) as two sides.

Example: Let \(\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \) and \(\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \). \(\mathbf{u} + \mathbf{v} \) is:
Example

Let \(\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \). Draw \(\mathbf{u} \), \(2\mathbf{u} \), and \(\frac{-3}{2}\mathbf{u} \).
Linear combinations of vectors

Given vectors v_1, v_2, \ldots, v_p in \mathbb{R}^n and given scalars c_1, c_2, \ldots, c_p in \mathbb{R}, the vector y defined by

$$y = c_1 v_1 + c_2 v_2 + \cdots + c_p v_p$$

is called a **linear combination** of v_1, v_2, \ldots, v_p using weights c_1, c_2, \ldots, c_p.
Example

Let \(\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \), \(\mathbf{a}_2 = \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix} \), \(\mathbf{a}_3 = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix} \), and \(\mathbf{b} = \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix} \).

Determine if \(\mathbf{b} \) is a linear combination of \(\mathbf{a}_1 \), \(\mathbf{a}_2 \), and \(\mathbf{a}_3 \).
Review of the example

\(a_1, a_2, a_3 \) and \(b \) are columns of the augmented matrix

\[
\begin{bmatrix}
1 & 4 & 3 & -1 \\
0 & 2 & 6 & 8 \\
3 & 14 & 10 & -5 \\
\end{bmatrix}
\]

Solution to

\[x_1 a_1 + x_2 a_2 + x_3 a_3 = b \]

is found by solving the linear system whose augmented matrix is

\[
\begin{bmatrix}
a_1 & a_2 & a_3 & b \\
\end{bmatrix}
\]
Linear combinations and vector equation

Vector Equation

A vector equation

\[x_1a_1 + x_2a_2 + \cdots + x_na_n = b \]

has the same solution set as the linear system whose augmented matrix is

\[
\begin{bmatrix}
a_1 & a_2 & \cdots & a_n & b \\
\end{bmatrix}
\]

In particular, \(b \) is a linear combination of \(a_1, a_2, \ldots, a_n \) if and only if there is a solution to the linear system corresponding to the augmented matrix.