MATH 2331 - 20947

Vladimir Yushutin
yushutin@math.uh.edu
Office : PGH 606
Lecture : MoWeFr 10:00AM-11:00AM in CBB 104
Office hours : Fr 3:00PM-4:00PM and BY APPOINTMENT
Matrix Equation

Matrix-Vector Multiplication

\[Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n \]

Note

The equation \(Ax = b \) has a solution if and only if \(b \) is a linear combination of the columns of \(A \).

Three Equivalent Ways

2. Vector equation \(x_1 a_1 + x_2 a_2 + \cdots + x_n a_n = b \).
3. Matrix equation \(Ax = b \).
Matrix Equation: Theorem

Theorem

If A is a $m \times n$ matrix, with columns a_1, \ldots, a_n, and if b is in \mathbb{R}^m, then the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix}.$$
Example

Let \(A = \begin{bmatrix} 1 & 4 & 5 \\ -3 & -11 & -14 \\ 2 & 8 & 10 \end{bmatrix} \) and \(\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \).

Is the equation \(A\mathbf{x} = \mathbf{b} \) consistent for all \(\mathbf{b} \)?
In the previous example, we considered matrix

\[
A = \begin{bmatrix}
1 & 4 & 5 \\
-3 & -11 & -14 \\
2 & 8 & 10 \\
\end{bmatrix}
\]

Notice that the columns of \(A \) are not independent (i.e., one of them is a linear combination of the others): the third column of \(A \) is the first column plus the second column

\[\rightarrow \text{the columns of } A \text{ span } \mathbb{R}^2, \text{ NOT } \mathbb{R}^3. \]

This is the reason why \(Ax = b \) is not consistent for all \(b \).
Matrix Equation: Span \mathbb{R}^m

Definition

We say that the columns of $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_p \end{bmatrix}$ span \mathbb{R}^m and write

$$\text{Span} \{a_1, \ldots, a_p\} = \mathbb{R}^m$$

if every vector b in \mathbb{R}^m is a linear combination of a_1, \ldots, a_p.

Theorem

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent:

1. For each b in \mathbb{R}^m, the equation $Ax = b$ has a solution.
2. Each b in \mathbb{R}^m is a linear combination of the columns of A.
3. The columns of A span \mathbb{R}^m.
4. A has a pivot position in every row.
Example

Let \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \) and \(b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \). Is the equation \(Ax = b \) consistent for all possible \(b \)?
Example

Do the columns of \(A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 3 & 9 \end{bmatrix} \) span \(\mathbb{R}^3 \)?
Theorem

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n, and c is a scalar, then:

1. $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$;
2. $A(c\mathbf{u}) = cA\mathbf{u}$.