MATH 2331 - 17571

Vladimir Yushutin
yushutin@math.uh.edu
Office : PGH 606
Lecture : TuTh 1:00PM-2:30PM in SEC 203
Office hours : TuTh 2.30PM-4PM and BY APPOINTMENT

- Use your UH e-mail account only!
- Exam 1 will be on Thursday 09/27 IN CLASS (75 min.).
- Exam 1 will be on Sec. 1.1-1.9.
- Review for the exam on Tuesday 02/25.
Introduction to Linear Transformations

Section 1.8
A transformation T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector x in \mathbb{R}^n a vector $T(x)$ in \mathbb{R}^m.

$T : \mathbb{R}^n \rightarrow \mathbb{R}^m$

transformation
“machine”
Transformations have many applications - including computer graphics.
Consider transformation:

\[T : \mathbb{R}^n \rightarrow \mathbb{R}^m \]
\[T : x \mapsto T(x) \]

\(\mathbb{R}^n \) is the **domain** of \(T \).

\(\mathbb{R}^m \) is the **codomain** of \(T \).

\(T(x) \) in \(\mathbb{R}^m \) is the **image** of \(x \) under the transformation \(T \).

Set of all images \(T(x) \) is the **range** of \(T \).
Define $T : \mathbb{R}^4 \rightarrow \mathbb{R}^2$ such that

$$T \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \right) = \begin{bmatrix} 3 + x_1^2 - x_3 \\ -x_3x_2 \end{bmatrix}$$

Given $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 5 \end{bmatrix}$, find $T(\mathbf{x})$.
Example

Define $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ by

$$T(x) = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Given $x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, find $T(x)$.
Example (cont.)
Another Way to View $A\mathbf{x} = \mathbf{b}$

Matrix A is an object acting on \mathbf{x} to produce a new vector \mathbf{b}.

Matrix Transformations

Suppose A is $m \times n$. Solving $A\mathbf{x} = \mathbf{b}$ amounts to finding all \mathbf{x} in \mathbb{R}^n which are transformed into vector \mathbf{b} in \mathbb{R}^m through multiplication by A.

multiply by A
Example

Given:

\[A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ -10 \end{bmatrix}, \quad c = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \]

define a matrix transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) by \(T(x) = Ax \).

a. Find an \(x \) in \(\mathbb{R}^3 \) whose image under \(T \) is \(b \).
Given:

\[
A = \begin{bmatrix}
1 & -2 & 3 \\
-5 & 10 & -15
\end{bmatrix}, \quad b = \begin{bmatrix}
2 \\
-10
\end{bmatrix}, \quad c = \begin{bmatrix}
3 \\
0
\end{bmatrix},
\]

define a transformation \(T : \mathbb{R}^3 \to \mathbb{R}^2 \) by \(T(x) = Ax \).

b. Is there more than one \(x \) under \(T \) whose image is \(b \)?

(*uniqueness problem*)
Example (cont.)

Given:

\[
A = \begin{bmatrix}
1 & -2 & 3 \\
-5 & 10 & -15
\end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ -10 \end{bmatrix}, \quad c = \begin{bmatrix} 3 \\ 0 \end{bmatrix},
\]

define a transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) by \(T(x) = Ax \).

c. Determine if \(c \) is in the range of the transformation \(T \). *(existence problem)*