Exam 1 will be on Thursday 09/27 IN CLASS (75 min.).
Exam 1 will be on Sec. 1.1-1.9.
Review for the exam on Tuesday 02/25.
A transformation T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector x in \mathbb{R}^n a vector $T(x)$ in \mathbb{R}^m.

\mathbb{R}^n is the **domain** of T.

\mathbb{R}^m is the **codomain** of T.

$T(x)$ in \mathbb{R}^m is the **image** of x under the transformation T.

Set of all images $T(x)$ is the **range** of T.
Example

Given:

\[A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ -10 \end{bmatrix}, \quad c = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \]

define a matrix transformation \(T : \mathbb{R}^3 \to \mathbb{R}^2 \) by \(T(x) = Ax \).

a. Find an \(x \) in \(\mathbb{R}^3 \) whose image under \(T \) is \(b \).
Example (cont.)

Given:

\[A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ -10 \end{bmatrix}, \quad c = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \]

define a transformation \(T : \mathbb{R}^3 \to \mathbb{R}^2 \) by \(T(x) = Ax \).

b. Is there more than one \(x \) under \(T \) whose image is \(b \)? *(uniqueness problem)*
Example (cont.)

Given:

\[A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ -10 \end{bmatrix}, \quad c = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \]

define a transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) by \(T(x) = Ax \).

c. Determine if \(c \) is in the range of the transformation \(T \).
(\textit{existence problem})
Linear Transformations

A transformation T is linear if:

1. $T(u + v) = T(u) + T(v)$ for all u, v in the domain of T.
2. $T(cu) = cT(u)$ for all u in the domain of T and all scalars c.

Examples: rotation, scaling, shearing but not translation.
Matrix Transformations

If A is $m \times n$, then the transformation $T(x) = Ax$ has the following properties:

$$T(u + v) = A(u + v) = _____ + _____$$

$$= _____ + _____$$

and

$$T(cu) = A(cu) = _____Au = _____ T(u)$$

for all u, v in \mathbb{R}^n and all scalars c.

Every matrix transformation is a **linear** transformation.
Theorem

If T is a linear transformation, then

$$T(0) = 0 \quad \text{and} \quad T(cu + dv) = cT(u) + dT(v).$$

Proof:

$$T(0) = T(0u) =$$

$$T(cu + dv) = T() + T() =$$
Example

Let $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $y_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $y_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

Suppose $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is a linear transformation which maps e_1 into y_1 and e_2 into y_2. Find the images of $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
Example (cont.)

\[T(3e_1 + 2e_2) = 3T(e_1) + 2T(e_2) \]
Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ such

$$T \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} |x_1 + x_3| \\ 2 + 5x_2 \end{bmatrix}$$

Show that T is not a linear transformation.

A way to solve the problem is to provide a counterexample. For instance, you can show that $T(0) \neq 0$
Identity Matrix

I_n is an $n \times n$ matrix with ones on the main (left to right diagonal) and zeros elsewhere. The i-th column of I_n is labeled e_i.

Identity Matrix

In general, for x in \mathbb{R}^n: $I_n x = x$

Matlab command: `eye(n)`
Matrix of Linear Transformation: Theorem

Theorem

Let \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a linear transformation. Then there exists a unique matrix \(A \) such that

\[
T(x) = Ax
\]

for all \(x \) in \(\mathbb{R}^n \).

Let \(e_j \) is the \(j \)-th column of the identity matrix in \(\mathbb{R}^n \). Matrix \(A \) is the \(m \times n \) matrix whose \(j \)-th column is the vector \(T(e_j) \):

\[
A = [T(e_1) \quad T(e_2) \quad \cdots \quad T(e_n)]
\]

Definition

Such matrix \(A \) is called standard matrix of the linear transformation \(T \).
Consider transformation:

\[T(x) = T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 - 2x_2 \\ 4x_1 \\ 3x_1 + 2x_2 \end{bmatrix} \]

Find the standard matrix of \(T \).
Example (cont.)
Example

Find the standard matrix of the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which rotates a point about the origin through an angle of $\frac{\pi}{4}$ radians (counterclockwise).

$T(e_1) = \begin{bmatrix} \end{bmatrix} \quad T(e_2) = \begin{bmatrix} \end{bmatrix}$