MATH 2331 - 17571

Vladimir Yushutin
yushutin@math.uh.edu
Office : PGH 606
Lecture : TuTh 1:00PM-2:30PM in SEC 203
Office hours : TuTh 2.30PM-4PM and BY APPOINTMENT
The Inverse of a Matrix

Section 2.2
The Inverse of a Matrix: Definition

The inverse of a real number a is denoted by a^{-1}. For example, $7^{-1} = 1/7$ and

$$7 \cdot 7^{-1} = 7^{-1} \cdot 7 = 1.$$

The Inverse of a Matrix

An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C satisfying

$$CA = AC = I_n$$

where I_n is the $n \times n$ identity matrix. We call C the inverse of A and denote it A^{-1}.
The Inverse of a 2-by-2 Matrix

Theorem

Let

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. \]

If \(ad - bc \neq 0 \), then \(A \) is invertible and

\[A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \]

If \(ad - bc = 0 \), then \(A \) is not invertible.
The Inverse of a Matrix: Definition

Theorem

*If A is an invertible $n \times n$ matrix, then for each b in \mathbb{R}^n, the equation $Ax = b$ has the unique solution $x = A^{-1}b$.***
The Inverse of a Matrix

WARNING

Not all $n \times n$ matrices are invertible. A matrix which is *not* invertible is called **singular**. An invertible matrix is called **nonsingular** matrix.

Fact

If A is invertible, then the inverse is unique.

Proof: Assume B and C are both inverses of A. Then

$$B = BI =$$
The Inverse of a Matrix: Theorem

Theorem

Suppose A and B are invertible. Then the following results hold:

a. A^{-1} is invertible and $(A^{-1})^{-1} = A$

b. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

c. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

Proof:
Example

Given

\[A = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}, \]

find \(A^{-1} \).
Example

Find the inverse of

\[B = \begin{bmatrix} 2 & 1 \\ -6 & -3 \end{bmatrix}. \]
Matlab command to find A^{-1}: \texttt{inv(A)}

In Matlab, if A is an invertible $n \times n$ matrix the solution of $Ax = b$ is not ordinarily obtained by computing the inverse of A, that is:

$$x = \texttt{inv(A)} * b$$

Instead, we use:

$$x = A \backslash b$$

because \texttt{inv} can be slower and less accurate than \texttt{\}.
The Inverse of Elementary Matrix

Question: How do we find the inverse of an invertible $n \times n$ matrix?

To answer this question, we first look at *elementary* matrices.

Elementary Matrices

An *elementary matrix* is one that is obtained by performing a single elementary row operation on an identity matrix.

Example:

$$ E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} $$
Multiplication by Elementary Matrices

Given matrix

\[A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \]

Observe the following product and describe how these product can be obtained by elementary row operations on \(A \).

\[EA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ 2d & 2e & 2f \\ g & h & i \end{bmatrix} \]
If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operations on I_m.
Elementary matrices are *invertible* because row operations are *reversible*. To determine the inverse of an elementary matrix E, determine the elementary row operation needed to transform E back into I and apply this operation to I to find the inverse.

Example: Given

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Find E^{-1}.
The elementary row operations that row reduce A to I_n are the same elementary row operations that transform I_n into A^{-1}.

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to the identity matrix I_n.

In this case, any sequence of elementary row operations that reduces A to I_n will also transform I_n to A^{-1}.
Algorithm for Finding A^{-1}

1. Place A and I side-by-side to form an augmented matrix $[A \ I]$.
2. Perform row operations on this matrix (which will produce identical operations on A and I) to reduce A to the identity matrix.
3. By the Theorem we have just seen:

 $$[A \ I] \text{ will row reduce to } [I \ A^{-1}]$$

 or A is not invertible.
Example

If it exists, find the inverse of:

\[
A = \begin{bmatrix}
2 & 0 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}.
\]

Verify your answer with Matlab.

\[
[A \ I] = \begin{bmatrix}
2 & 0 & 0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]
Example

Suppose $A, B, C,$ and D are invertible $n \times n$ matrices and

$$A = B(D - I_n)C.$$

Solve for D in terms of A, B, C and I_n.

Be careful!
Order of multiplication is important.
Exercise

Express \((ABC)^{-1}\) in terms of \(A^{-1}\), \(B^{-1}\), and \(C^{-1}\).