Vladimir Yushutin
yushutin@math.uh.edu
Office: PGH 606
Lecture: MoWeFr 10:00AM-11:00AM in CBB 104
Office hours: Fr 3:00PM-4:00PM and BY APPOINTMENT
The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent (i.e., for a given A, they are either all true or all false).

a. A is an invertible matrix.

j. There are $n \times n$ matrices C, D such that $CA = I_n$ and $AD = I_n$.

b. A is row equivalent to I_n.

c. A has n pivot positions.

l. A^T is an invertible matrix.
The Invertible Matrix Theorem (cont.)

d. The equation $Ax = 0$ has only the trivial solution.

e. The columns of A form a linearly independent set.

g. The equation $Ax = b$ is consistent for each b in \mathbb{R}^n.

h. The columns of A span \mathbb{R}^n.

f. The linear transformation $x \rightarrow Ax$ is one-to-one.

i. The linear transformation $x \rightarrow Ax$ maps \mathbb{R}^n onto \mathbb{R}^n.
Use the Invertible Matrix Theorem to determine if A is invertible, where

$$A = \begin{bmatrix} 1 & -3 & 1 \\ 1 & 11 & 1 \\ 2 & 7 & 2 \end{bmatrix}.$$
Example

Is it possible for a 4×4 matrix A to be invertible when its columns do not span \mathbb{R}^4? Why or why not?
Example

If an $n \times n$ matrix A is invertible, then the columns of A^T are linearly independent. Explain why.
Can a square matrix A with two identical columns be invertible? Why or why not?
Example

Can a square matrix A with two identical rows be invertible? Why or why not?
Example

If the columns of a 7×7 matrix D are linearly independent, what can be said about the solutions of $Dx = b$? Why?
Introduction to Determinants

Section 3.1
Determinant: "invertibility" number

Determinant of a 1×1 matrix

Given a 1×1 matrix $A = a$, with $a \in \mathbb{R}$, $\det A = a$.

Determinant of a 2×2 matrix

Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Then, $\det A = ad - bc$.

Determinant of a $n \times n$ matrix? Conjecture:

There is a number associated with any matrix (function $\det()$ on matrices), zero value of which corresponds to a singular matrices only.
Find the determinant of the matrix and check if it’s singular or nonsingular:

\[
\begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix} \quad \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} \quad \begin{vmatrix} 2 & 7 \\ -2 & -7 \end{vmatrix} \quad \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix}
\]
Introduction to Determinants

In order to define the determinant of an $n \times n$ matrix, we need some notation first:

A_{ij} is the matrix obtained from matrix A by deleting the i-th row and j-th column of A, while a_{ij} is the entry located in the intersection of the i-th row and j-th column of A.

Example:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} \quad A_{23} = \begin{bmatrix} \end{bmatrix}$$
Let $A = [a_{ij}]$ be $n \times n$ matrix, with $n \geq 2$. Then:

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$
Determinants: Example

Find the determinant of A:

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}.$$
Determinants: Cofactor Expansion

Definition

Let \(A = [a_{ij}] \) be \(n \times n \) matrix, with \(n \geq 2 \). Then:

\[
\text{det} \ A = \sum_{j=1}^{n} (-1)^{1+j} \ a_{1j} \ \text{det} \ A_{1j}
\]

Definition

The \((i, j)\)-cofactor of \(A \) is an entry of \(n \times n \) matrix \(C_A \) where

\[
(C_A)_{ij} = (-1)^{i+j} \ \text{det} \ A_{ij}.
\]

Example: cofactor expansion across row 1

\[
\begin{vmatrix}
1 & 2 & 0 \\
3 & -1 & 2 \\
2 & 0 & 1 \\
\end{vmatrix} = 1C_{11} + 2C_{12} + 0C_{13}
\]