The Characteristic Equation

Definitions
Equation \(\det (A - \lambda I) = 0 \) is called \textit{characteristic equation} and \(\det (A - \lambda I) \) is called \textit{characteristic polynomial}.

Solve \(\det (A - \lambda I) = 0 \) for \(\lambda \) to find the eigenvalues.

Theorem
\textit{The eigenvalues of a triangular matrix are the diagonal entries.}
The Invertible Matrix Theorem - continued

Theorem (The Invertible Matrix Theorem - continued)

Let A be an $n \times n$ matrix. Then A is invertible if and only if:

- The number 0 is not an eigenvalue of A.
- $\det A \neq 0$

Algebraic Multiplicity

The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic equation.
Example

Find the eigenvalues of A and give their multiplicity:

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ 9 & 1 & 3 & 0 \\ 1 & 2 & 5 & -1 \end{bmatrix}.$$
Similarity

For $n \times n$ matrices A and B, we say the A is similar to B if there is an invertible matrix P such that

$$P^{-1}AP = B \quad \text{or equivalently,} \quad A = PBP^{-1}.$$

Theorem

If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues.
Diagonalization

Section 5.3
Diagonalization

Goal: Given an $n \times n$ matrix A, find an easy way to compute A^k quickly for large k by using a similarity relationship $A = PDP^{-1}$.

Example: Let

$$D = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}.$$

Find D^2 and D^3. In general, what is D^k, where k is a positive integer?
Powers of Diagonal Matrix

D^k is trivial to calculate: it is the diagonal matrix that on the main diagonal has the diagonal entries of D to the k-th power.
Example

Find a formula for A^k given that $A = PDP^{-1}$ where D is a diagonal matrix.
A square matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix, i.e. if $A = PDP^{-1}$ where P is invertible and D is a diagonal matrix.

When is A diagonalizable??

The answer lies in examining the eigenvalues and eigenvectors of A.
Diagonalizable

In general,

\[A \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \]

and if \(\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \) is invertible, \(A \) equals

\[\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}^{-1} \]
Diagonalization Theorem

Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.
Example

Diagonalize the following matrix, if possible.

\[A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix} \]

Step 1. Find the eigenvalues of A.
Example (cont.)
Example (cont.)

Step 2. Find the eigenvectors of A.
Example (cont.)
Example (cont.)
Diagonalization: Example (cont.)

Step 3: Construct P from the vectors at step 2 and check if it is invertible.

Step 4: Construct D from the corresponding eigenvalues.
Diagonalization: Example (cont.)

Step 5: Check your work by verifying that $AP = PD$

$$AP = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} =$$

$$PD = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} =$$
Diagonalization

Theorem
An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Example: Is

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 6 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

diagonalizable? Why?
Example

Diagonalize the following matrix, if possible.

\[
A = \begin{bmatrix}
2 & 4 & 6 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{bmatrix}.
\]
Example (cont.)
Example (cont.)
Example (cont.)
Example

Use Matlab to verify that A is not diagonalizable:

$$A = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{bmatrix}.$$
Matlab exercise

Use Matlab to check if A is diagonalizable:

$$A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 24 & -12 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
A, P, and D are $n \times n$ matrices. Mark each statement True or False. Justify your answer.

- A is diagonalizable if $A = PDP^{-1}$ for some matrix D and some invertible matrix P.

- If \mathbb{R}^n has a basis of eigenvectors of A, then A is diagonalizable.
Example

A, P, and D are $n \times n$ matrices. Mark each statement True or False. Justify your answer.

- A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.

- If A is diagonalizable, then A is invertible.