MATH 2331 - 17571

Vladimir Yushutin
yushutin@math.uh.edu
Office: PGH 606
Lecture: TuTh 1:00PM-2:30PM in SEC 203
Office hours: TuTh 2:30PM-4PM and BY APPOINTMENT
Orthonormal Sets

A set of vectors \(\{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) in \(\mathbb{R}^n \) is called an \textbf{orthonormal set} if \(\mathbf{u}_i \cdot \mathbf{u}_j = 0 \) for \(i \neq j \) and \(\mathbf{u}_i \cdot \mathbf{u}_j = 1 \) for \(i = j \).

Example: Is \(\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \) an orthonormal set?
Example

Is \(S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \) an orthonormal set?
Orthonormal Sets

Orthonormal Basis
Suppose \(\{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) is an orthonormal set of nonzero vectors in \(\mathbb{R}^n \) and \(W = \text{Span}\{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \), then \(\{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) is an orthonormal basis for \(W \).

Suppose \(U = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \mathbf{u}_3] \) where \(\{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \} \) is an orthonormal set.

\[
U^T U = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \mathbf{u}_3^T \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix} =
\]
Orthonormal Matrix: Theorems

Theorem

An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

Theorem

Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n. Then

a. $\|Ux\| = \|x\|

b. $(Ux) \cdot (Uy) = x \cdot y$

c. $(Ux) \cdot (Uy) = 0$ if and only if $x \cdot y = 0$.
Orthonormal Matrix: Example

Orthogonal Matrix

If the columns of U are n orthonormal vectors in \mathbb{R}^n, then:

$$U^T U = UU^T = I.$$

So

$$U^{-1} = U^T$$

Such a matrix is called **orthogonal matrix**.
Describe all linear transformations of \mathbb{R}^2 with orthonormal standard matrices.
Orthogonal Projections

Section 6.3
Orthogonal Projections

Given two nonzero vectors \mathbf{y} and \mathbf{u} in \mathbb{R}^n, suppose we want to write \mathbf{y} in the following way:

$$\mathbf{y} = (\text{multiple of } \mathbf{u}) + (\text{a vector } \perp \text{ to } \mathbf{u}) = \alpha \mathbf{u} + \mathbf{u}^\perp$$
Orthogonal Projections

\[u \perp \cdot u = 0 \implies (y - \alpha u) \cdot u = 0 \implies y \cdot u - \alpha (u \cdot u) = 0 \]

\[\implies \alpha = \frac{y \cdot u}{u \cdot u} \]

\[\hat{y} = \alpha u = \frac{y \cdot u}{u \cdot u} \]

is the orthogonal projection of \(y \) onto \(u \)
Orthogonal Projections

\[\hat{y} \perp = y - \hat{y} = y - \alpha y = y - \frac{y \cdot u}{u \cdot u} u \]

The distance between the tip of \(y \) and the line passing through \(u \) is given by \(\| \hat{y} \perp \| \).
Example

Given:

\[y = \begin{bmatrix} -8 \\ 4 \end{bmatrix}, \quad u = \begin{bmatrix} 3 \\ 1 \end{bmatrix}. \]

Find the orthogonal projection of \(y \) onto \(u \) and the distance between the tip of vector \(y \) and the line through \(u \).
\[\hat{y} = \frac{y \cdot u}{u \cdot u} u \] is the **orthogonal projection of** \(y \) **onto** \(u \).
Orthogonal Projection

Theorem
Suppose \(\{u_1, \ldots, u_p\} \) is an orthogonal basis for \(W \) in \(\mathbb{R}^n \). For each \(y \) in \(W \), we have:

\[
y = \left(\frac{y \cdot u_1}{u_1 \cdot u_1} \right) u_1 + \cdots + \left(\frac{y \cdot u_p}{u_p \cdot u_p} \right) u_p
\]

Proof:
Example

Suppose \(\{u_1, u_2, u_3\} \) is an orthogonal basis for \(\mathbb{R}^3 \) and let \(W = \text{Span}\{u_1, u_2\} \). Write \(y \) in \(\mathbb{R}^3 \) as the sum of a vector in \(W \) and a vector in \(W^\perp \).
The Orthogonal Decomposition Theorem

Theorem

Let W be a subspace of \mathbb{R}^n. Then each y in \mathbb{R}^n can be uniquely represented in the form

$$ y = \hat{y} + \hat{y}^\perp $$

where \hat{y} is in W and \hat{y}^\perp is in W^\perp. In fact, if $\{u_1, \ldots, u_p\}$ is any orthogonal basis of W, then

$$ \hat{y} = \left(\frac{y \cdot u_1}{u_1 \cdot u_1} \right) u_1 + \cdots + \left(\frac{y \cdot u_p}{u_p \cdot u_p} \right) u_p $$

and

$$ \hat{y}^\perp = y - \hat{y}. $$

The vector \hat{y} is called the **orthogonal projection of y onto W**.
The Orthogonal Decomposition Theorem

\[\hat{y} = \text{proj}_W y \]
In \mathbb{R}^3, define vectors:

$$
y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}.
$$

Find the orthogonal projection of y onto $\text{Span}\{u_1, u_2\}$.
In \mathbb{R}^4, define vectors:

$$
\mathbf{y} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}.
$$

Find the orthogonal projection of \mathbf{y} onto $\text{Span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.
Orthogonal Matrix

If $U = \begin{bmatrix} u_1 & u_2 & \cdots & u_p \end{bmatrix}$. Then $U^T = \begin{bmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_p^T \end{bmatrix}$.

So

$$UU^T = u_1u_1^T + u_2u_2^T + \cdots + u_pu_p^T$$

and

$$\left(UU^T\right)y = \left(u_1u_1^T + u_2u_2^T + \cdots + u_pu_p^T\right)y$$
Orthogonal Projection: Theorem

Theorem

- If \(\{u_1, \ldots, u_p\} \) is an orthonormal basis for a subspace \(W \) of \(\mathbb{R}^n \), then
 \[
 \hat{y} = (y \cdot u_1) u_1 + \cdots + (y \cdot u_p) u_p
 \]

- If \(U = \begin{bmatrix} u_1 & u_2 & \cdots & u_p \end{bmatrix} \), then
 \[
 \hat{y} = UU^T y \quad \text{for all } y \text{ in } \mathbb{R}^n.
 \]

Outline of Proof:

\[
\hat{y} = \left(\frac{y \cdot u_1}{u_1 \cdot u_1} \right) u_1 + \cdots + \left(\frac{y \cdot u_p}{u_p \cdot u_p} \right) u_p
\]

\[
= (y \cdot u_1) u_1 + \cdots + (y \cdot u_p) u_p = UU^T y.
\]