MATH 2331 - 20947

Vladimir Yushutin

yushutin@math.uh.edu

Office : PGH 606

Lecture : MoWeFr 10:00AM-11:00AM in CBB 104

Office hours : Fr 3:00PM-4:00PM and BY APPOINTMENT
Let $T : V \rightarrow W$ be a linear transformation.

Definition

The *kernel* of T is the set of all vectors u in V such that $T(u) = 0$.

So if $T(x) = Ax$, $\text{Nul } A = \text{kernel of } T$.

Definition

The *range* of T is the set of all vectors in W of the form $T(u)$ where u is in V.

So if $T(x) = Ax$, $\text{Col } A = \text{range of } T$.
Rank

Section 4.6
Row Space

The **row space** of an $m \times n$ matrix A, denoted by Row A, is the set of all linear combinations of the rows of A.

$$\text{Row } A = \text{Col } A^T$$

Theorem

The row space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n.

Note that we can also consider the Nul A^T finding a symmetry in positions of A and A^T.
Definition

Rank of a linear transformation is the number of pivots in the standard matrix.

Theorem (4 subspaces for T)

*For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ with a standard matrix A:

$$\dim \text{Row } A = r \quad \quad \quad \dim \text{Col } A = r$$

$$\dim \text{Nul } A = n - r \quad \quad \quad \dim \text{Nul } A^T = m - r$$

where $r = \text{rank } A$ is the rank of T.

Fundamental subspaces can intersect by the zero vector only.
Bases for the 4 subspaces of T

1. Find a standard matrix for T: $[T(e_1), ..., T(e_n)] = A$
2. Row reduce A to the echelon form B.
3. Pivot columns of A(not B!) form a basis for the Col A. Corresponding pivot rows of A form a basis for the Row A.
4. Vectors from the parametric form of the solution set of $Bx = 0$ constitute a basis for Nul A.
5. To find a basis for Nul A^T row reduce A^T and find the solution to $A^T x = 0$. Vectors from the parametric form constitute a basis for Nul A^T.