Vladimir Yushutin
yushutin@math.uh.edu
Office: PGH 606
Lecture: MoWeFr 10:00AM-11:00AM in CBB 104
Office hours: Fr 3:00PM-4:00PM and BY APPOINTMENT
Orthonormal Sets

A set of vectors \(\{u_1, u_2, \ldots, u_p\} \) in \(\mathbb{R}^n \) is called an **orthonormal set** if \(u_i \cdot u_j = 0 \) for \(i \neq j \) and \(u_i \cdot u_j = 1 \) for \(i = j \).

Theorem

Suppose \(\{u_1, \ldots, u_p\} \) is an orthogonal basis for \(W \) in \(\mathbb{R}^n \). For each \(y \) in \(W \), we have:

\[
y = \left(\frac{y \cdot u_1}{u_1 \cdot u_1} \right) u_1 + \cdots + \left(\frac{y \cdot u_p}{u_p \cdot u_p} \right) u_p
\]
Orthogonal Projections

Section 6.3
Orthogonal Projections

Given two nonzero vectors y and u in \mathbb{R}^n, suppose we want to write y in the following way:

$$y = (\text{multiple of } u) + (\text{a vector } \perp \text{ to } u) = \hat{y} + y_{\perp}$$
Orthogonal Projections

\[y^\perp \cdot u = 0 \quad \implies \quad (y - \alpha u) \cdot u = 0 \quad \implies \quad y \cdot u - \alpha (u \cdot u) = 0 \]

\[\implies \quad \alpha = \frac{y \cdot u}{u \cdot u} \]

\[\hat{y} = \alpha u = \frac{y \cdot u}{u \cdot u} \quad \text{is the orthogonal projection of } y \text{ onto } u \]
Orthogonal Projections

\[y \perp = y - \hat{y} = y - \alpha y = y - \frac{y \cdot u}{u \cdot u} u \]

The distance between the tip of \(y \) and the line passing through \(u \) is given by \(\| \hat{y} \perp \| \)
Example

Given:

\[y = \begin{bmatrix} -8 \\ 4 \end{bmatrix}, \quad u = \begin{bmatrix} 3 \\ 1 \end{bmatrix}. \]

Find the orthogonal projection of \(y \) onto \(u \) and the distance between the tip of vector \(y \) and the line through \(u \).
Orthogonal Projection

\[\hat{y} = \frac{y \cdot u}{u \cdot u} u \text{ is the orthogonal projection of } y \text{ onto } u. \]

\[y^\perp = y - \frac{y \cdot u}{u \cdot u} u \text{ is orthogonal to } u. \]
Example

Suppose \(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \) is an orthogonal basis for \(\mathbb{R}^3 \) and let \(W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\} \). Write \(\mathbf{y} \) in \(\mathbb{R}^3 \) as the sum of a vector in \(W \) and a vector in \(W^\perp \).
The Orthogonal Decomposition Theorem

Theorem

Let \(W \) be a subspace of \(\mathbb{R}^n \). Then each \(y \) in \(\mathbb{R}^n \) can be uniquely represented in the form

\[
y = \hat{y} + \hat{y}^\perp
\]

where \(\hat{y} \) is in \(W \) and \(\hat{y}^\perp \) is in \(W^\perp \). In fact, if \(\{u_1, \ldots, u_p\} \) is any orthogonal basis of \(W \), then

\[
\hat{y} = \left(\frac{y \cdot u_1}{u_1 \cdot u_1} \right) u_1 + \cdots + \left(\frac{y \cdot u_p}{u_p \cdot u_p} \right) u_p
\]

and

\[
\hat{y}^\perp = y - \hat{y}.
\]

The vector \(\hat{y} \) is called the **orthogonal projection of** \(y \) **onto** \(W \).
The Orthogonal Decomposition Theorem

\[\hat{y} = \text{proj}_W y \]
Example

In \mathbb{R}^3, define vectors:

\[y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}. \]

Find the orthogonal projection of y onto $\text{Span}\{u_1, u_2\}$.

V. Yushutin, UH
In \mathbb{R}^4, define vectors:

\[y = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ -1 \\ 3 \\ 1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}. \]

Find the orthogonal projection of y onto $\text{Span}\{u_1, u_2, u_3\}$.